36 resultados para Muscle Pyruvate-kinase
Resumo:
Artemia has evolved a unique developmental pattern of encysted embryos to cope with various environmental threats. Cell divisions totally cease during the preemergence developmental stage from gastrula to prenauplius. The molecular mechanism of this, however, remains unknown. Our study focuses on the involvement of p90 ribosomal S6 kinase (RSK), a family of serine/threonine kinase-mediating signal transduction downstream of mitogen-activated protein kinase cascades, in the termination of cell cycle arrest during the post-embryonic development of Artemia-encysted gastrula. With immunochemistry, morphology, and cell cycle analysis, the identified Artemia RSK was established to be specifically activated during the post-embryonic and early larval developmental stages when arrested cells of encysted embryos resumed mitoses. In vivo knockdown of RSK activity by RNA interference, kinase inhibition, and antibody neutralization consistently induced defective larvae with distinct gaps between the exoskeleton and internal tissues. In these abnormal individuals, mitoses were detected to be largely inhibited in the affected regions. These results display the requirement of RSK activity during Artemia development and suggest its role in termination of cell cycle (G(2)/M phase) arrest and promotion of mitogenesis. Our findings may, thus, provide insights into the regulation of cell division during Artemia post-embryonic development and reveal further aspects of RSK functions.
Resumo:
Arginine kinase (AK) was previously reported as a phosphagen-ATP phosphotransferase found in invertebrates. In this study, an 1184 bp cDNA was cloned and sequenced. It contained an open reading frame of 1068 bp that coded for 356 deduced amino acids of AK in Fenneropenaeus chinensis. The calculated molecular mass of AK is 40129.73 Da and pI is 5.92. The predicted protein showed a high level of identity to known AK in invertebrates and creatine kinase from vertebrates, which belong to a conserved family of ATP:guanidino phospho-transferases. In addition, AK protein in plasma of F. chinensis was identified using two-dimensional electrophoresis (2DE) and electrospray ionization mass spectrometry (ESI-MS) according to the calculated molecular mass and pI. AK was significantly decreased in the plasma of F. chinensis at 45 min and recovered at 3 It after laminarin injection as confirmed by 2DE and ESI-MS. The results showed that AK was one of the most significantly changed proteins on two-dimensional gel in the plasma proteins of F. chinensis at 45 min and 3 It after simulation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme had been isolated, purified and partially characterized from muscle tissue of the shrimp Macrobrachium nipponense. The purification was achieved by heat treatment, ammonium sulfate fractionated precipitation and column chromatograph on DEAE-cellulose 32. Some physiological and biochemical characterization of it was tested. The molecular weight of it was about 21.7 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had an absorption peak of 278 nm in ultraviolet region, and the enzyme remained stable at 25-45 degreesC within 90 min. However, it was rapidly inactivated at higher temperature. Treatment of the enzyme with 1 mM ZnCl2, SDS and 1 mM or 10 mM mercaptoethanol showed some increasing activity. However, the enzyme activity was obviously inhibited by 10 mM CaCl2, CuSO4, ZnCl2 and 1 mM CaCl2 and 10 mM K2Cr2O7. SOD activity did not show significantly variation after incubated with 1 mM CaCl2, EDTA and 10 MM SDS. The enzyme was insensitive to cyanide and contained 1.03 +/- 0.14 atoms of manganese per subunit shown in atomic absorption spectroscopy, which revealed that purified SOD was Mn superoxide dismutase. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Myogenin is a bHLH transcription factor of the MyoD family. It plays a crucial role in myoblast differentiation and maturation. We report here the isolation of flounder myogenin gene and the characterization of its expression patterns. Sequence analysis indicated that flounder myogenin shared a similar structure and the conserved bHLH domain with other vertebrate myogenin genes. Flounder myogenin gene contains 3 exons and 2 introns. Sequence alignment and phylogenetic showed that flounder myogenin was more homologous with halibut (Hippoglossus hippoglossus) myogenin and striped bass (Morone saxatilis) myogenin. Whole-mount embryo in situ hybridization revealed that flounder myogenin was first detected in the medial region of somites that give rise to slow muscles, and expanded later to the lateral region of the somite that become fast muscles. The levels of myogenin transcripts dropped significantly in matured somites at the trunk region. Its expression could only be detected in the caudal somites, which was consistent with the timing of somite maturation. Transient expression analysis showed that the 546 bp flounder myogenin promoter was sufficient to direct muscle-specific GFP expression in zebrafish embryos. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Specification and differentiation of skeletal muscle cells are driven by the activity of genes encoding members of the myogenic regulatory factors (MRFs). In vertebrates, the MRF family includes MyoD, Myf5, myogenin, and MRF4. The MRFs are capable of converting a variety of nonmuscle cells into myoblasts and myotubes. To better understand their roles in fish muscle development, we isolated the MyoD gene from flounder (Paralichthys olivaceus) and analyzed its structure and patterns of expression. Sequence analysis showed that flounder MyoD shared a structure similar to that of vertebrate MRFs with three exons and two introns, and its protein contained a highly conserved basic helix-loop-helix domain (bHLH). Comparison of sequences revealed that flounder MyoD was highly conserved with other fish MyoD genes. Sequence alignment and phylogenetic analysis indicated that flounder MyoD, seabream (Sparus aurata) MyoD1, takifugu (Takifugu rubripes) MyoD, and tilapia (Oreochromis aureus) MyoD were more likely to be homologous genes. Flounder MyoD expression was first detected as two rows of presomitic cells in the segmental plate. From somitogenesis, MyoD transcripts were present in the adaxial cells that give rise to slow muscles and the lateral somitic cells that give rise to fast muscles. After 30 somites formed, MyoD expression decreased in the somites except the caudal somites, coincident with somite maturation. In the hatching stage, MyoD was expressed in other muscle cells and caudal somites. It was detected only in muscle in the growing fish.
Resumo:
The enantioselective hydrogenation of ethyl pyruvate on the cinchonidine modified Pt/Al2O3 catalyst was investigated using a high-pressure reaction system with a fixed-bed reactor for the purpose to produce the,chiral product without separating the catalyst from the reaction system. The reaction was also investigated in a batch reactor for comparison. About 60% e. e. and 90% e. e. were obtained with the fixed-bed reactor and the batch reactor respectively, demonstrating the possibility for the heterogeneous asymmetric hydrogenation in the fixed-bed reactor. Some adsorbed chiral modifier, cinchonidine, can be slowly removed from the surface of Pt/Al2O3 under the continuous flow reaction, as a result, the e, e, values drops with the reaction time in the fixed-bed reactor. The enantio-selectivity is higher in the fixed-bed reactor, but lower in the batch reactor when ethanol was used as solvent than that when acetic acid as solvent. CO was used as molecular probe to characterize the adsorption of cinchonidine an the catalyst surface by IR spectroscopy, A red shift observed in IR spectra of coadsorbed CO with cinchonidine suggests that the cinchonidine adsorption is mainly through the pi -interaction with platinum surface and donating electron to the platinum surface.