115 resultados para Motif ARN
Resumo:
Partial cDNA sequences of TCR gamma and CD3 gamma/delta were isolated from the thymus of common carp (Cyprinus carpio L.) by the method of suppression subtractive hybridization (SSH). Subsequently the full length cDNAs of carp TCR gamma and CD3 gamma/delta were obtained by means of 3' RACE and 5' RACE, respectively. The full length of carp TCR gamma chain is 1368 bp and encodes 326 amino acids including a signal peptide region of 19 amino acids and a transmembrane region of 23 amino acids at the C-terminal region from aa 291 to 313. The V region of carp TCR gamma contains 109 amino acids, the core motif FGXG in J segment was also found in carp TCR gamma. The C region of carp TCR gamma contains the characteristic CX6PX6WX45C motif. The CP region of carp TCR C gamma contains 37 amino acids. The full length of carp CD3 gamma/delta is 790 bp and encodes 175 amino acids including a signal peptide region of 17 amino acids and a transmembrane region of 23 amino acids from aa 93 to 115. Similar to other known CD3 gamma/delta s, four cysteine residues in the extracellular domain and an immunoreceptor tyrosine-based activation motif ITAM (YxxL/Ix6-8YxxL/I) in the intracellular domain are also included in carp CD3 gamma/delta. Differing from other known CD3 gamma/delta s, carp CD3 gamma/delta tacks the CXXCXE motif in the extracellular domain. RTPCR analysis demonstrated that the expression of TCR gamma gene was mainly in the thymus and gill of 6-month carp, but in 18-month carp, TCR gamma gene was detected in all the examined tissues. The expression of CD3 gamma/delta gene was detected in all examined tissues of 6 and 18-month carp; among them, the highest expression level was in the thymus of 6-month carp. In situ hybridization showed that CD3 gamma/delta-expressing cells were widely distributed in the head kidney, spleen and kidney of carp, whereas in the thymus, they were densely distributed in the lymphoid outer zone and scattered in the epithelioid inner zone. (c) 2007 Published by Etsevier Ltd.
Resumo:
By suppression subtractive hybridization, rapid amplification of cDNA ends and gene walking methods, interferon stimulated genes (ISGs), Viperin and ISG15, and their promoters have been cloned and characterized from snakehead Channa argus. The Viperin cDNA was found to be 1474 nt and contain an open reading frame (ORF) of 1059 nt that translates into a putative peptide of 352 amino acid (aa). The putative peptide of Viperin shows high identity to that in teleosts and mammals except for the N-terminal 70 aa. The ISG15 cDNA was found to be 758 nt and contain an ORF of 468 nt that translates into a putative peptide of 155 aa. The putative peptide of ISG15 is composed of two tandem repeats of ubiquitin-like (UBL) domains, and a canonical conjugation motif (LRGG) at C-terminal. Viperin and ISG15 promoter regions were characterized by the presence of interferon stimulating response elements (ISRE) and gamma-IFN activation sites (GAS). ISRE is a feature of IFN-induced gene promoter and partially overlaps interferon regulatory factor (IRF) 1 and IRF2 recognition sites. GAS is responsible for the gamma-IFN mediated transcription. One conserved site for NF-kappa B was found in the promoter region of Viperin. This is the first report of conservative binding motif for NF-kappa B in accordance with the consensus sequence (GGGRN-NYYCC) among teleost ISG promoters. Moreover, there were also TATA, CAAT and Sp1 transcription factor sites in Viperin and ISG15 promoters. In 5' untranslated region (UTR), snakehead ISG15 gene contains a single intron, which differs from Viperin gene. The transcripts of Vipeirn and ISG15 mRNA were mainly expressed in head kidney, posterior kidney, spleen and gill. The expression levels in liver were found to increase obviously in response to induction by IFN-inducer poly I : C.
Resumo:
TNF receptor associated factor 1 (TRAF1) plays an important role in regulating the TNF signaling and protecting cells from apoptosis. In the present study, a TRAF1 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The full-length cDNA is 2235 bp, including a 250 bp 5' UTR (untranslated region), a 1659 bp open reading frame, and a 326 bp 3'UTR. The polyadenylation signal (AATAAA, AATAA) and one mRNA instability motif (AUUUA) were found followed by a poly (A) tail in the 3'UTR. No signal peptide or transmembrane region has been found in the putative amino acids of grass carp TRAF1 (gcTRAF1). The putative amino acids of gcTRAF1 share 72% identity with the homologue in zebrafish. It is characterized by a zinc finger at the N-terminus and a TRAF domain (contains one TRAF-C and one TRAF-N) at the C-terminus. The identity of the TRAF domain among all the TRAF1 homologues in vertebrates varies from 52% to 58%, while the identities of TRAF-C were almost the same as 70%. The recombinant gcTRAF1 has been constructed successfully and expressed in Escherichia coli by using pET-32a expression vector. The polyclonal antibody for rabbit has been successfully obtained. The expression of gcTRAF1 in different organs was examined by real-time quantitative PCR and Western blotting, respectively. It was widely distributed in heart, head kidney, thymus, brain, gill, liver, spleen, and trunk kidney. This is the first report of TRAF1 homologue molecule found in fish. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Interferon (IFN)-regulatory transcription factor-1 (IRF-1) has been studied in mammals and fish but little is known about the relationship between its gene structure and nuclear 'ion of IRF-1 protein. In this study, a cDNA encoding Carassius auratus IRF-1 (CaIRF-1) was isolated from an interferon-producing cell line, C. ouratus blastulae embryonic (CAB) cells, exposed to UV-inactivated grass carp hemorrhagic virus (GCHV). The CaIRF-1 genomic locus exhibits exon-intron arrangements similar to those of other vertebrate IRF-1 loci, with nine exons and eight introns, although together with pufferfish IRF-1, CaIRF-1 distinguishes itself from other vertebrate IRF-1 genes by a relatively compact genomic size. Similar to the known IRF-1 genes, CaIRF-1 is ubiquitously expressed, and is upregulated in vitro and in vivo in response to virus, Poty I:C, or CAB INF-containing supernatant (ICS). Subcellular localization analysis confirms the nuclear distribution of CaIRF-1 protein, and reveals two nuclear localization signals (NILS), any one of which is sufficient for nuclear translocation of CaIRF-1. One NLS Locates to amino acids 117-146, and appears to be the structural and functional equivalent of the NLS in mammalian IRF-1. The second NLS (amino acids 73-115) is found within the DNA-binding domain (DBD) of CaIRF-1, and contains two regions rich in basic amino acids (''(KDKSINK101)-K-95" and ''(75)KTWKANFR(82)"). In comparison with mammalian IRF-1, in which the corresponding amino acid stretch does not seem to drive nuclear translocation, five conserved basic amino acids (K-75, K-78, R-82, K-95, and K-101) and one non-conserved basic amino acid (K-97) are present in this NLS from CaIRF-1. This observation suggests that K97 Of CaIRF-1 might be essential for the function of its second NLS, wherein the six basic aminoacids might cooperate to drive CaIRF-1 to the nucleus. Therefore, the current study has revealed a new nuclear localization motif in the DBD of a vertebrate IRF-1. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Partial cDNA sequences of both CD8 beta and CD4-like (CD4L) genes of common carp (Cyprinus carpio L.) were isolated from thymus cDNA library by the method of suppression subtractive hybridization (SSH). Subsequently the full length cDNAs of carp CD8 and CD4L were obtained by means of 3' RACE and 5' RACE, respectively. The full length cDNA of carp CD8 is 1164 bp and encodes 207 amino acids including a signal peptide region of 24 amino acids, a transmembrane region of 23 amino acids from aa 167 to aa189 and an immunoglobulin V-set from aa 19 to aa 141. Similar to other species CD8 beta s,carp CD8 beta also lacks p56(lck) domain in the cytoplasmic region. The full length cDNA of carp CD4L is 2001 bp and encodes 458 amino acids including four immunoglobulin (Ig)-like domains in the extracellular region, a transmembrane region of 23 amino acids at the C-terminal region from aa 402 to aa 424 and a cytoplasmic tail. Similar to mammalian, avian CD4s and fugu CD4L, carp CD4L also has the conserved p56(lck) tyrosine kinase motif (C-X-C) in the cytoplasmic region. RT-PCR analysis demonstrated that carp CD8 beta and CD4L genes were both expressed predominantly in thymus. The results from this study can be used to understand the evolution of both the CD8 beta and CD4 molecules which can be used as markers for cytotoxic and helper T cells in carp. (c) 2007 Published by Elsevier Ltd.
Resumo:
Voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is acknowledged to play an important role in stress-induced mammalian apoptosis. In this study, Paralichthys olivaceus VDAC (PoVDAC) gene was identified as a virally induced gene from Scophthalmus Maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). The full length of PoVDAC cDNA is 1380 bp with an open reading frame of 852 bp encoding a 283 amino acid protein. The deduced PoVDAC contains one alpha-helix, 13 transmembrane beta-strands and one eukaryotic mitochondrial porin signature motif. Constitutive expression of PoVDAC was confirmed in all tested tissues by real-time PCR. Further expression analysis revealed PoVDAC mRNA was upregulated by viral infection. We prepared fish antiserum against recombinant VDAC proteins and detected the PoVDAC in heart lysates from flounder as a 32 kDa band on western blot. Overexpression of PoVDAC in fish cells induced apoptosis. Immunofluoresence localization indicated that the significant distribution changes of PoVDAC have occurred in virus-induced apoptotic cells. This is the first report on the inductive expression of VDAC by viral infection, suggesting that PoVDAC might be mediated flounder antiviral immune response through induction of apoptosis. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
ISG15 is one of the most strongly induced genes upon viral infection, interferon (IFN) stimulation, and lipopolysaccharide, (LPS) stimulation, and only one copy has been found in mammals so far. Here two fish ISG15 genes, termed CaISG15-1 and CaISG15-2, have been cloned and sequenced from UV-inactivated GCHV (grass carp haemorrhagic virus)-infected and IFN-produced CAB cells (crucian carp Carassius auratus blastulae embryonic cells) by suppression subtractive hybridization. The full-length cDNA sequences of two crucian carp ISG15 encode a 155-amino-acid protein and a 161-amino-acid protein, both of which show 78.9% identity overall and possess the characteristic structures of mammalian ISG15 proteins including two tandem ubiquitin-like domains and the C-terminal canonical LRLRGG motif. In CAB cells treated with different stimuli including active virus, UV-inactivated GCHV and IFN containing supernatant (ICS), the expression of both CaISG15-1 and CaISG15-2 was up-regulated but displayed different kinetics. Poly I:C and LPS were also able to induce an increase in mRNA for both genes. In CAB cells responsive to active GCHV, UV-inactivated GCHV, CAB ICS, Poly 1:12 and LPS, CaISG15-1 was upregulated more significantly than CaISG15-2. These results suggest that there are two ISG15 homologues in crucian carp, both of which might play distinct roles in innate immunity against viral and bacterial infection. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The gene of piscidin, an antimicrobial peptide, has been cloned from the mandarin fish, Siniperca chuatsi. From the first transcription initiation site, the mandarin fish piscidin gene extends 1693 nucleotides to the end of the 3' untranslated region and contains four exons and three introns. A predicted 79-residue prepropeptide consists of three domains: a signal peptide (22 aa), a mature peptide (22 aa) and a C-terminal prodomain (35 aa). The shortage of XQQ motif in the prodomain of mandarin fish piscidin and the similar gene structure between moronecidins (piscidins) and pleurocidins may indicate that they are derived from the same ancestor gene. We thus suggest that piscidin should be used as a terminology for these antimicrobial peptides in the future. The mandarin fish piscidin mRNA was abundant in intestine, spleen, pronephros and kidney analysed by real-time polymerase chain reaction. After stimulation with lipopoly saccharides (LPS), a marked increase in transcripts was observed in most tissues, indicating that piscidin is not only a constitutively expressed molecule, but also has an increased response to bacterial infection. The synthetic, amidated mandarin fish piscidin exhibited different antimicrobial activity against different fish bacterial pathogens, especially against species of Aeromonas, which may to certain extent reflect the pathogenicity of these bacteria.
Resumo:
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325-amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with. the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.
Resumo:
Protein arginine methyltransferase 1 (PRMT1) is currently thought as an effector to regulate interferon (IFN) signalling. Here Paralichthys olivaceus PRMT1 (PoPRMT1) gene was identified as a vitally induced gene from UV-inactivated Scophthalmus maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). PoPMRT1 encodes a 341-amino-acid protein that shares the conserved domains including post-I, motif I, II and III. Homology comparisons show that the putative PoPMRT1 protein is the closest to zebrafish PMRT1 and belongs to type I PRMT family (including PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, PRMT8). Expression analyses revealed an extensive distribution of PoPMRT1 in all tested tissues of flounder. In vitro induction of PoPRMT1 was determined in UV-inactivated SMRV-infected FEC cells, and under the same conditions, flounder Mx wash also transcriptionally up-regulated, indicating that an IFN response might be triggered. Additionally, live SMRV infection of flounders induced an increased expression of PoPRMT1 mRNA and protein significantly in spleen, and to a lesser extent in head kidney and intestine. Immunofluorescence analysis revealed a major cyptoplasmic distribution of PoPRMT1 in normal FEC but an obvious increase occurred in nucleus in response to UV-inactivated SMRV. This is the first report on in vitro and in vivo expression of fish PRMT1 by virus infection, suggesting that PoPRMT1 might be implicated in flounder antiviral immune response. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The Deleted in azoospermia family consists of RNA-binding proteins Bottle, Daz, and Daz-like (Dazl) that are expressed in the germline. Here, we report the cloning and expression of the medakafish (Oryzias latipes) dazl gene (odazl). Interestingly, although the predicted medaka Dazl protein (oDazl) contains a RRM motif and a DAZ repeat characteristic of its mammalian homologs, it lacks 80 aa at the C-terminus. By RT-PCR, RNA in situ hybridization, Western blotting and fluorescent immunohistochemistry using a rabbit anti-DazI antibody (alpha Oazl), we analyzed the expression patterns of odazl and its protein. The odazl transcript persists throughout embryogenesis and delineates with primordial germ cells. In adults, the expression of odazl RNA and its protein is restricted to germ cells of both the testis and ovary. We observed differential expression of RNA and protein at critical stages of gametogenesis. In the testis, the odazl RNA is low at premeiotic stages, abundant at meiotic stages, but absent in postmeiotic stages; whereas the oDazl protein is rich in premeiotic stages, reduced at meiotic stages, becomes barely detectable or absent in postmeiotic round spermatids or sperm, respectively. This is in sharp mature spermatozoa. In the ovary, the odazl RNA contrast to the human situation where the Dazl transcript and protein are present in and protein persist throughout oogenesis and also show differential expression at premeiotic, meiotic and postmeiotic stages. Thus, the odazl or its protein is a marker for germ cells during embryogenesis and at critical stages of gametogenesis in both sexes of medaka. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel fish chemokine receptor gene, chemokine (C-X-C motif) receptor 3 (CXCR3)-like was isolated from the grass carp Ctenopharyngodon idella , with its full-length genomic sequence. The cDNA of grass carp CXCR3-like (gcCXCR3-like) consists of 1261 bp with a 49bp 5'-UTR and a 189 bp 3'-UTR. An open reading frame of 1023 bp encodes a 341-amino acid peptide, with seven transmembrane helices. The deduced amino acid sequence showed the same sequence identities (37.8%) with its counterparts in goat and human. The gcCXCR3-like gene consists of two exons, with one intervening intron, spaced over approximately 2 kb of genomic sequence. Phylogenetic analyses clearly demonstrated that the gcCXCR3-like resembles the CXCR3s of other vertebrates. Real-time PCR analysis showed that gcCXCR3-like was expressed in all tested organs except heart and the expression level of gcCXCR3-like was highest in brain. Flow cytometric analyses showed the positive rate of labelled leukocytes from the healthy grass carp was 17.3%, and the labelled leukocytes were divided into three types by cell sorting. Immunohistochemical localization revealed that gcCXCR3-like expressed in whole brain regions including cerebel, diencephalon, medulla oblongata, optic lobe, and rhinencephalon, and that the labelled leukocytes are actually populations of monocyte and/or phagocyte, lymphocyte and the granulocyte. It is considered that fish CXCR expression and their function may need to be investigated in both nervous and immune systems. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Heat shock proteins (Hsps) are a family of highly conserved cellular proteins present in all organisms, mediating a range of essential housekeeping and cytoprotective functions as well-known molecular chaperons and recently as regulators of the immune response. By subtractive suppression hybridization, three Hsp40 homologues have been identified in the flounder (Paralichthys olivaceus) embryonic cells (FEC) after treatment with UV-inactivated turbot (Scophthalmus maximus L.) rhabdovirus (SMRV), termed PoHsp40A4, PoHsp40B6 and PoHsp40B11, whose encoded proteins all possess the conserved DnaJ domain, a signature motif of the Hsp40 family. Based on different protein structure and phylogenetic analysis, they can be categorized into two subfamilies, PoHsp40A4 for Type I Hsp40, PoHsp40B6 and PoHsp40B11 for Type 11 Hsp40. Further expression analysis revealed two very different types of kinetics in response either to heat shock or to virus infection, with a marked induction for PoHsp4OA4 and a weak one for both PoHsp40B6 and PoHsp40B11. A very distinct tissue distribution of mRNA was also revealed among the three genes, even between PoHsp40B6 and PoHsp40B11. This is the first report on the transcriptional induction of Hsp40 in virally stimulated fish cells, and the differential expressions might reflect their different roles in unstressed and stressed cells. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Further to the previous finding of the rainbow trout rtCATH_1 gene, this paper describes three more cathelicidin genes found in salmonids: two in Atlantic salmon, named asCATH_1 and asCATH_2, and one in rainbow trout, named rtCATH_2. All the three new salmonid cathelicidin genes share the common characteristics of mammalian cathelicidin genes, such as consisting of four exons and possessing a highly conserved preproregion and four invariant cysteines clustered in the C-terminal region of the cathelin-like domain. The asCATH_1 gene is homologous to the rainbow trout rtCATH_1 gene, in that it possesses three repeat motifs of TGGGGGTGGC in exon IV and two cysteine residues in the predicted mature peptide, while the asCATH_2 gene and rtCATH_2 gene are homologues of each other, with 96% nucleotide identity. Salmonid cathelicidins possess the same elastase-sensitive residue, threonine, as hagfish cathelicidins and the rabbit CAP18 molecule. The cleavage site of the four salmonid cathelicidins is within a conserved amino acid motif of QKIRTRR, which is at the beginning of the sequence encoded by exon W. Two 36-residue peptides corresponding to the core part of rtCATH_1 and rtCATH_2 were chemically synthesized and shown to exhibit potent antimicrobial activity. rtCATH_2 was expressed constitutively in gill, head kidney, intestine, skin and spleen, while the expression of rtCATH_1 was inducible in gill, head kidney, and spleen after bacterial challenge. Four cathelicidin genes have now been characterized in salmonids and two were identified in hagfish, confirming that cathelicidin genes evolved early and are likely present in all vertebrates.
Resumo:
Natural resistance associated macrophage protein (Nramp) controls partially innate resistance to intracellular parasites. Its function is to enhance the ability of macrophages to kill pathogens. However, little is known about the structure and function of Nramp in lower vertebrates such as teleosts. We have recently isolated a cDNA encoding Nramp from Japanese flounder (Paratichthys olivaceus). The full-length cDNA of the Nramp is 3066 bp in length, including 224 bp 5' terminal UTR, 1662 bp encoding region and 1180 bp 3' terminal UTR. The 1662-nt open reading frame was found to code for a protein with 554 amino acid residues. Comparison of amino acid sequence indicated that Japanese flounder Nramp consists of 12 transmembrane (TM) domains. A consensus transport motif (CTM) containing 20 residues was observed between transmembrane domains 8 and 9. The deduced amino acid sequence of Japanese flounder had 77.30%, 82.71%, 82.67%, 79.64%, 80.72%, 90.97%, 91.16%, 60.14%, 71.48%, 61.69%, 72.37% identity with that of rainbow trout Nramp alpha and beta, channel catfish Nramp, fathead minnow Nramp, common carp Nramp, striped sea bass Nramp, red sea bream Nramp, mouse Nramp 1 and 2, human Nramp 1 and 2, respectively. RT-PCR indicated that Nramp transcripts were highly abundant in spleen, head kidney, abundant in intestine, liver and gill, and less abundant in heart. The level of Nramp mRNA in embryos gradually increases during embryogenesis from 4 h (8 cell stage) to 80 h (hatched stage) after fertilization. (c) 2005 Elsevier Ltd. All rights reserved.