130 resultados para Molecular Dynamics, Simulation, Modeling, Protein, Coarse Graining


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 3. 6 ns molecular dynamics simulation was carried out on the complex system of tobramycin and 16S rRNA in order to understand the speciality recognition mechanism between tobramycin and 16S rRNA at the molecular level. The results demonstrate that two l

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the characteristics of the decomposition of methane hydrate Structure I (SI) in the presence of hydrogen peroxide solution is investigated using the molecular dynamics simulation. The mechanism of the transformation process from the solid hydrate to the liquid is analyzed with the effect of hydrogen peroxide (HP) solution. In addition, the effect of ethylene glycol (EG) with the same molar concentration with HP on the methane hydrate dissociation is also studied. The results illustrate that both HP and EG promote well the hydrate dissociation. The work provides the important reference value for the experimental investigation into the promotion effect of HP on the hydrate dissociation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissociation of methane hydrate in the presence of ethylene glycol (11.45 mol.L-1) at 277.0 K was studied using canonical ensemble (NVT) molecular dynamics simulations. Results show that hydrate dissociation starts from the surface layer of the solid hydrate and then gradually expands to the internal layer. Thus, the solid structure gradually shrinks until it disappears. A distortion of the hydrate lattice structure occurs first and then the hydrate evolves from a fractured frame to a fractional fragment. Finally, water molecules in the hydrate construction exist in the liquid state. The inner dissociating layer is, additionally, coated by a liquid film formed from outer dissociated water molecules outside. This film inhibits the mass transfer performance of the inner molecules during the hydrate dissociation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The grain boundary is an interface and the surface tension is one of its important thermodynamic properties. In this paper, the surface tension of the ∑9 grain boundary for α-Fe at various temperatures and pressures is calculated by means of Computer Molecular Dynamics (CMD). The results agree satisfactorily with the experimental data. It is shown that the contribution of entropy to surface tension of grain boundary can be ignored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, phase transition temperatures of side chain liquid crystal polymer were predicted by molecular dynamics simulation. We analyzed the change of energy and the degree of similarity(S) with the temperature varying. The simulated phase transition temperatures agree with the experimental values in a proper deviation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics is applied to the system of polystyrene-block-poly(methyl methacrylate). The simulation shows that for the block copolymer system, a layered structure, which reflects microphase separation, is obtained and this structure is stable. In order to elucidate that the formation of the layered structure is reasonable, some static properties such as the radial distribution function and the dipole moment are analyzed in some detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are calculated. A screw dislocation is introduced into workpiece Si. It is found that motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocation is far below the yield strength of Si.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dislocation emission from the crack tip in copper under mode II loading is simulated with molecular dynamics method. After 26 partial dislocations are emitted and then relaxed to reach the equilibrium under the constant displacement, the double pile-ups (including an inverse pile-up and a pile-up) are formed. i.e., the first dislocation is piled up before the obstruction, and the last dislocation is piled up ahead of the crack tip. These results conform to the TEM observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations using Morse interaction potential are performed in studies of [110] symmetrical tilt grain boundary (GB) structures with mis-orientation angles 50.5 degrees(Sigma 11), 129.5 degrees(Sigma 11), 70.5 degrees(Sigma 3) and 109.5 degrees(Sigma 3) at various tempratures. The GB structures are found to start local disordering at about 0.5T(m)(T-m is the melting point of aluminium) for 50.5 degrees(Sigma 11), 0.32T(m) for 129.5 degrees(Sigma 11) and 0.38T(m) for 70.5 degrees(Sigma 3), respectively. These results agree with conclusions deduced from the anelastic measurements. But, for twin-boundary structure 109.5 degrees(Sigma 3), this disordering has not been found even when temperature increases up to 0.9T(m).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of water on the brittle behavior of beta-cristobalite is studied by means of molecular dynamics (MD) simulation With the TTAM potential. Crack extension of mode 1 type is observed as the crack opening is filled LIP With water. The critical stress intensity factor K-lc(MD) is used to characterize the crack extension of MD simulation. The surface energy of SiO2 covered with layers of water is calculated at temperature of 300 K. Based oil the Griffith fracture criterion, the critical stress intensity factor K-lc(Griffith) is calculated, and it is in good agreement with that of MD simulation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations on diffusion bonding of Cu-Ag showed that the thickness of the interfacial region depended on the stress. The interfacial region became amorphous during diffusion bonding, and it would normally transform from amorphous into crystalline structure when the structure was cooled to the room temperature.