276 resultados para Mode lock
Resumo:
Near threshold, mixed mode (I and II), fatigue crack growth occurs mainly by two mechanisms, coplanar (or shear) mode and branch (or tensile) mode. For a constant ratio of ΔKI/ΔKII the shear mode growth shows a self-arrest character and it would only start again when ΔKI and ΔKII are increased. Both shear crack growth and the early stages of tensile crack growth, are of a crystallographic nature; the fatigue crack proceeds along slip planes or grain boundaries. The appearance of the fracture surfaces suggest that the mechanism of crack extension is by developing slip band microcracks which join up to form a macrocrack. This process is thought to be assisted by the nature of the plastic deformation within the reversed plastic zone where high back stresses are set up by dislocation pile-ups against grain boundaries. The interaction of the crack tip stress field with that of the dislocation pile-ups leads to the formation of slip band microcracks and subsequent crack extension. The change from shear mode to tensile mode growth probably occurs when the maximum tensile stress and the microcrack density in the maximum tensile plane direction attain critical values.
Resumo:
Two local solutions, one perpendicular and one parallel to the direction of solar gravitational field, are discussed. The influence of gravity on the gas-dynamical process driven by the piston is discussed in terms of characteristic theory, and the flow field is given quantitatively. For a typical piston trajectory similar to the one for an eruptive prominence, the velocity of the shock front which locates ahead the transient front is nearly constant or slightly accelerated, and the width of the compressed flow region may be kept nearly constant or increased linearly, depending on the velocity distribution of the piston. Based on these results, the major features of the transient may be explained. Some of the fine structure of the transient is also shown, which may be compared in detail with observations.
Resumo:
For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.
Resumo:
A recoverable plate impact testing technology has been used for studying the growth mechanisms of mode II crack. The results show that interactions of microcracks ahead of a crack tip cause the crack growth unsteadily. Failure mode transitions of materials were observed. Based on the observations, a discontinuous crack growth model was established. Analysis shows that the shear crack grows unsteady as the growth speed is between the Rayleigh wave speed c(R) and the shear wave speed c(s); however, when the growth speed approaches root 2c(s), the crack grows steadily. The transient microcrack growth makes the main crack speed to jump from subsonic to intersonic and the steady growth of all the sub-cracks leads the main crack to grow stably at an intersonic speed.
Resumo:
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carried out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-critical flow regime; (2) with increasing gap-to-diameter ratio (e (0)/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/f (n) ) has a slight variation for the case of larger values of e (0)/D (e (0)/D > 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylinder between the larger gap-to-diameter ratios (e (0)/D > 0.66) and the smaller ones (e (0)/D < 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of V (r) number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of V (r) and the frequency ratio (f/f (n) ) become larger.
Resumo:
Diode-pumped passively mode-locked laser operation of Yb3+,Na+:CaF2 single crystal has been demonstrated for the first time. By using a SESAM ( semiconductor saturable mirror), simultaneous transform-limited 1-ps passively mode-locked pulses, with the repetition rate of 183MHz, were obtained under the self-Q-switched envelope induced by the laser medium. The average output power of 360mW was attained at 1047nm for 3.34W of absorbed power at 976nm, and the corresponding pulse peak power arrived at 27kW, indicating the promising application of Yb3+,Na+-codoped CaF2 crystals in achieving ultra-short pulses and high pulse peak power. (c) 2005 Optical Society of America.
Resumo:
Stimulated Raman scattering (SRS) of a relativistic laser in plasmas is studied in the framework of the standard equation set of a three-wave process. As far as every wave involved in the process is concerned, its evolution has two aspects: time-dependent amplitude and time-dependent frequency. These two aspects affect each other. Strict analysis and numerical experiment on the full three-wave equation set reveal that a fast growing mode of the instability, which could reach a balance or saturation point during a period far shorter than an estimation based on conventional analysis, could take place in a standard three-wave process without coupling with a fourth wave. This fast growing mode is found to stem from the constraint set by the background density on the amplitude of the driven Langmuir wave. The effect of various parameters on the development of the SRS instability is studied by numerical calculation of the history of the instability in different cases. (c) 2007 American Institute of Physics.
Resumo:
It is the first time in China that the phase variations and phase shift of microwave cavity in a miniature Rb fountain frequency standard are studied, considering the effect of imperfect metallic walls. Wall losses in the microwave cavity lead to small traveling wave components that deliver power from the cavity feed to the walls of cavity. The small traveling wave components produce a microradian distribution of phase throughout the cavity ity, and therefore distributed cavity phase shifts need to be considered. The microwave cavity is a TE011 circular cylinder copper cavity, with round cut-hole of end plates (14mm in diameter) for access for the atomic flux and two small apertures in the center of the side wall for coupling in microwave power. After attenuation alpha is calculated, field variations in cavity are solved. The field variations of the cavity are given. At the same time, the influences of loaded quality factor QL and diameter/height (2a/d) of the microwave cavity on the phase variations and phase shift are considered. According to the phase variation and phase shift of microwave cavity we select the parameters of cavity, diameter 2a = 69.2mm, height d = 34.6mm, QL = 5000, which will result in an uncertainty delta(Delta f / f0 ) < 4.7 x 10(-17) and meets the requirement for the miniature Rb fountain frequency standard with accuracy 10(-15).
Resumo:
We use coherent-mode representation of partially coherent fields to analyze correlated imaging with classical light sources. This formalism is very useful to study the imaging quality. By decomposing the unknown object as the superposition of different coherent modes, the components corresponding to small eigenvalues cannot be well imaged. The generated images depend crucially on the distribution of the eigenvalues of the coherent-mode representation of the source and the decomposition coefficients of the objects. Three kinds of correlated imaging schemes are analyzed numerically.
Resumo:
We demonstrate theoretically that the negatively chirped femtosecond laser pulse can be spectrally narrowed by cross-phase modulation. The new view is well Supported by numerical simulation. The negative chirp method in fibers might be useful in all optical wavelength switching applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a simple technique to determine the coupling efficiency between a laser diode and a lensed-tip based on the ABCD transformation matrix method. We have compared our analysis technique to that of previous work and have found that the presented method is reliable in predicting the coupling efficiency of lensed-tip and has the advantage of simplicity of coupling efficiency calculation even by a pocket calculator. The results can be useful for designing coupling optics. (c) 2005 Elsevier GmbH. All rights reserved.