82 resultados para Mixed training


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the Raman scattering and the photoluminescence (PL) of ZnSxTe1-x mixed crystals grown by MBE, covering the entire composition range (0 less than or equal to x < 1). The results of Raman studies show that the ZnSxTe1-x mixed crystals display two-mode behaviour. In addition, photoluminescence spectra obtained in backscattering and edge-emission geometries, reflectivity spectra and the: temperature dependence of the photoluminescence of ZnSxTe1-x have been employed to find out the origin of PL emissions in ZnSxTe1-x with different x values. The results indicate that emission bands, for the samples with small x values, can be related to the band gap transitions or a shallow-level emission centre, while as x approaches 1, they are designated to strong radiative recombination of Te isoelectronic centres (IECs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 degrees C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. 2008 International Association for Hydrogen Energy.