39 resultados para Microorganisms adhesion
Resumo:
The uniaxial tension experiments on glass-fiber-reinforced epoxy matrix composites reveal that the fragmentations of fibers display vertically aligned fracture, clustered fracture, coordinated fracture, and random fracture with the increase of inter-fiber spacing. The finite element analysis indicates that the fragmentations of fibers displaying different phenomena are due to the stress concentration as well as the inherent randomness of fiber defects, which is the dominant factor. The experimental results show that matrices adjacent to the fiber breakpoints all exhibit birefringent-whitening patterns for the composites with different interfacial adhesion strengths. The larger the extent of the interfacial debonding, the less the domain of the birefringent-whitening patterns. The numerical analysis indicates that the orientation of the matrix adjacent to a fiber breakpoint is caused by the interfacial shear stress, resulting in the birefringent-whitening patterns. The area of shear stress concentrations decides on the domain of the birefringent-whitening patterns.
Resumo:
Cowpea mosaic virus (CPMV)-based thin films are biologically active for cell culture. Using layer-by-layer assembly of CPMV and poly(diallyldimethylammonium chloride), quantitatively scalable biomolecular surfaces were constructed, which were well characterized using quartz crystal microbalance, UV-vis and atomic force microscopy. The surface coverage of CPMV nanoparticles depended on the adsorption time and pH of the virus solution, with a greater amount of CPMV adsorption occurring near its isoelectric point. It was found that the adhesion and proliferation of NIH-3T3 fibroblasts can be controlled by the coverage of viral particles using this multilayer technique.
Resumo:
In this study, we report the effects of ferricyanide on organisms based on the changes in physiological state and morphology of Escherichia coli (E coli) DH 5 alpha after being pretreated by ferricyanide. The impact on bacterial cell growth and viable rate of exposure to different concentrations of ferricyanide was determined, and the morphology change of E. coli was studied by atomic force microscopy (AFM). Finally, recovery test was used to evaluate the recovery ability of injured cells. The results showed that the effects on growth and morphology of E. coli were negligible when the concentration of ferricyanide was below 25.0 mM. While the results showed 50.8% inhibition of growth in the presence of 50.0 mM ferricyanide for 3 h, 89.6% viability was detected by flow cytometry (FCM) assay. AFM images proved that compact patches appeared on the bacterial surface and protected the bacterial viability. Furthermore, the results revealed that deterioration of bacterial surface closely related to the incubation time from 0.5 to 3 h at 100.0 mM ferricyanide. In the recovery test, microbial cell population and dissolved oxygen individually decreased 36.7% and 28.3% with 25.0 mM ferricyanide.
Resumo:
For the purpose of manufacturing cigarette filter tows and filter rods, the melt-spinning, adhesion and adsorption properties of poly(lactic acid) were studied. The rheological measurements were performed to examine the effects of various processing conditions on the melt flowability and spinnability, including those of residual moisture. The melt spinning and post-processings were followed by determining the molecular weight, thermal and mechanical properties of the fibers. The results obtained were useful to establishing the specification of the PLA resins for filter tows and filter rods manufacturing and to choosing proper melt-spinning and post-processing technologies.
Resumo:
The interface behavior of polyamide 1010 (PA1010) and polypropylene (PP) was studied. In order to improve their interfacial adhesion, functional PP was prepared by means of grafting glycidyl methacrylate (GMA) on PP main chains and used instead of plain PP. Several technological characterizations were performed here on their interfaces. ESCA was used to confirm that some kind of reaction occurred between end groups of PA1010 and epoxy species of PP-g-GMA. The peel test was adopted to measure interfacial adhesion. It was found that the fracture energy of interfaces between PA1010 and PP-g-GMA was dramatically increased with the content of GMA. Their interfaces were observed as being blurred by using SEM and TEM and a crack that could be seen in the case of the interfaces of the PA1010 and the plain PP disappeared.
Resumo:
A new enzyme assay method for screening alpha-glucosidase inhibitors with rapidity and simplicity was developed. The enzyme-substituted alpha-glucosidases for this assay was glucoamylase. Samples were spotted or developed on the silica gel plate. The agar solution containing substrate was poured on the plate, and paper impregnated with enzyme was layered on the agar. After incubation, an inhibitory circle would appear around the inhibitor. By using this method, more than 200 strains of marine microorganisms were screened. Among them, three active strains were found to secrete inhibitors in the culture medium.
Resumo:
C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P < 0.01) after scallops were stimulated by LPS. PGN or beta-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant Cflec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind beta-glucan. Immunofluorescence assay with polyclonal antibody specific for Cflec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny. (C) 2010 Elsevier Ltd. All rights reserved.