294 resultados para Metallic iron


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The cladded coating possessed the hypoeutectic microstructure of the primary dendritic gamma-austenite and interdendritic eutectic consisting of (gamma+M7C3). The gamma-austenite is a nonequilibrium phase with extended solid solution of alloying elements. And, a great deal of fine structures, i.e., a high density of dislocations, twins, and stacking faults existed in austenite phase. During high temperature aging, the precipitation of M23C6, MC and M2C in austenite and in situ transformation of M7C3(+gamma) --> M23C6 and M7C3+gamma --> M6C occurred. The laser clad coating revealed an evident secondary hardening and superior impact wear resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapidly solidified microstructural and compositional features, the precipitation and transformation of carbides during tempering, and the impact wear resistance of an iron-based alloy coating prepared by laser cladding are investigated. The clad coating alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1.1.1, is processed using a continuous wave CO, laser. Microstructural studies demonstrate that the coating possesses the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisting of gamma-austenite and M7C3 carbides. gamma-Austenite is a non-equilibrium phase with an extended solid solution of alloying elements. During high temperature tempering at 963 K for 1 h, the precipitation of M23C6, MC and M2C carbides in austenite and in situ carbide transformation of M7C3 to M23C6 and M7C3 to M6C respectively are observed. In addition, the microstructure of the laser-clad coating reveals an evident secondary hardening and a superior impact wear resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The instability of the crack tip in brittle Mg-based bulk metallic glass (BMG) is studied. The formation of various fractographic surfaces of the BMG is associated with the instability of the fluid meniscus, which is due to viscous fluid matter being present on the fracture process zone. Depending on the values of the wavelength of the initial perturbation of the fluid meniscus and the local stress intensity factor, different fracture surface profiles, i.e. a dimple-like structure, a periodic corrugation pattern and a pure mirror zone are formed. The fractographic evolution is significantly affected by the applied stress. A decreased fracture Surface roughness is observed under a low applied stress. An increased fracture surface roughness, which has frequently been reported by other researchers, is also observed in the present studies under a high applied stress. Unique fractographic features are attributed to the non-linear hyperelastic stiffening for less softening) mechanism. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL) theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ compressive tests on specially designed small samples made from brittle metallic foams were accomplished in a loading device equipped in the scanning electron microscopy (SEM). Each of the small samples comprises only several cells in the effective test zone (ETZ), with one major cell in the middle. In such a system one can not only obtain sequential collapse-process images of a single cell and its cell walls with high resolution, but also correlate the detailed failure behaviour of the cell walls with the stress-strain response, therefore reveal the mechanisms of energy absorption in the mesoscopic scale. Meanwhile, the stress-strain behaviour is quite different from that of bulk foams in dimensions of enough large, indicating a strong size effect. According to the in situ observations, four failure modes in the cell-wall level were summarized, and these modes account for the mesoscopic mechanisms of energy absorption. Paralleled compression tests on bulk samples were also carried out, and it is found that both fracturing of a single cell and developing of fracture bands are defect-directed or weakness-directed processes. The mechanical properties of the brittle aluminum foams obtained from the present tests agree well with the size effect model for ductile cellular solids proposed by Onck et al. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crack propagation and strain field evolution in two metallic glassy ribbons are studied using in situ scanning electron microscopy and the white digital speckle correlation method. Strain state at the crack tip, which depends heavily on the fracture toughness, plays a key role in fracture. A high degree of shear strain concentration in tough glassy ribbon can satisfy the critical shear strain, resulting in shear fracture, whereas a high degree of linear strain concentration in brittle glassy ribbon can initiate normal tensile fracture. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using molecular dynamics simulations, we show that the mechanical deformation behaviors of single-crystalline nickel nanowires are quite different from their bulk counterparts. Correlation between the obtained stress-strain curves and the visualized defect evolution during deformation processes clearly demonstrates that a sequence of complex dislocation slip events results in a state of dislocation starvation, involving the nucleation and propagation of dislocations until they finally escape from the wires, so that the wires deform elastically until new dislocations are generated. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an unusual transition from a locally ductile to a pure brittle fracture in the dynamic fracture of brittle Mg65Cu20Gd10 bulk metallic glass. The fractographic evolution from a dimple structure to a periodic corrugation pattern and then to the mirror zone along the crack propagation direction during the dynamic fracture process is discussed within the framework of the meniscus instability of the fracture process zone. This work might provide an important clue in understanding of the energy dissipation mechanism for dynamic crack propagation in brittle glassy materials. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the observations of a clear fractographic evolution from vein pattern, dimple structure, and then to periodic corrugation structure, followed by microbranching pattern, along the crack propagation direction in the dynamic fracture of a tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) bulk metallic glass (BMGs) under high-velocity plate impact. A model based on fracture surface energy dissipation and void growth is proposed to characterize this fracture pattern transition. We find that once the dynamic crack propagation velocity reaches a critical fraction of Rayleigh wave speed, the crack instability occurs; hence, crack microbranching goes ahead. Furthermore, the correlation between the critical velocity of amorphous materials and their intrinsic strength such as Young's modulus is uncovered. The results may shed new insight into dynamic fracture instability for BMGs. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viscoelastic deformation and creep behavior of La- and Ce-based bulk metallic glasses (BMGs) with low glass transition temperature are investigated through nanoindentation at room temperature. Creep compliance and retardation spectra are derived to study the creep mechanism. The time-dependent displacement can be well described by a generalized Kelvin model. A modification is proposed to determine the elastic modulus from the generalized Kelvin model. The results are in excellent agreement with the elastic modulus determined by uniaxial compression tests. (c) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore, it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conventional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work, the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was investigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow, the typical plastic deformation feature of BMGs, could not be found in as-cast and partially crystallized samples during nanoindentation. In addition, the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pile-up around indenter is usually observed during instrumented indentation tests on bulk metallic glass. Neglecting the pile-up effect may lead to errors in evaluating hardness, Young's modulus, stress-strain response, etc. Finite element analysis was employed to implement numerical simulation of spherical indentation tests on bulk metallic glass. A new model was proposed to describe the pile-up effect. By using this new model, the contact radius and hardness of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were obtained under several different indenter loads with pile-up, and the results agree well with the data generated by numerical simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the plastic deformation and constitutive behaviour of bulk metallic glasses (BMGs). A dimensionless Deborah number De(ID) = t(r)/t(i) is proposed to characterize the rate effect in BMGs, where t(r) is the structural relaxing characteristic time of BMGs under shear load, t(i) is the macroscopic imposed characteristic time of applied stress or the characteristic time of macroscopic deformation. The results demonstrate that the modified free volume model can characterize the strain rate effect in BMGs effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compression, tension and high-velocity plate impact experiments were performed on a typical tough Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) over a wide range of strain rates from similar to 10(-4) to 10(6) s(-1). Surprisingly, fine dimples and periodic corrugations on a nanoscale were also observed on dynamic mode I fracture surfaces of this tough Vit 1. Taking a broad overview of the fracture patterning of specimens, we proposed a criterion to assess whether the fracture of BMGs is essentially brittle or plastic. If the curvature radius of the crack tip is greater than the critical wavelength of meniscus instability [F. Spaepen, Acta Metall. 23 615 (1975); A.S. Argon and M. Salama, Mater. Sci. Eng. 23 219 (1976)], microscale vein patterns and nanoscale dimples appear on crack surfaces. However, in the opposite case, the local quasi-cleavage/separation through local atomic clusters with local softening in the background ahead of the crack tip dominates, producing nanoscale periodic corrugations. At the atomic cluster level, energy dissipation in fracture of BMGs is, therefore, determined by two competing elementary processes, viz. conventional shear transformation zones (STZs) and envisioned tension transformation zones (TTZs) ahead of the crack tip. Finally, the mechanism for the formation of nanoscale periodic corrugation is quantitatively discussed by applying the present energy dissipation mechanism.