64 resultados para Marginal lakes
Resumo:
Although the peritrichous ciliate Carchesium polypinum is common in freshwater, its population genetic structure is largely unknown. We used inter-simple sequence repeat (ISSR) fingerprinting to analyze the genetic structure of 48 different isolates of the species from four lakes in Wuhan, central China. Using eight polymorphic primers, 81 discernible DNA fragments were detected, among which 76 (93.83%) were polymorphic, indicating high genetic diversity at the isolate level. Further, Nei's gene diversity (h) and Shannon's Information index (I) between the different isolates both revealed a remarkable genetic diversity, higher than previously indicated by their morphology. At the same time, substantial gene flow was found. So the main factors responsible for the high level of diversity within populations are probably due to conjugation (sexual reproduction) and wide distribution of swarmers. Analysis of molecular variance (AMOVA) showed that there was low genetic differentiation among the four populations probably due to common ancestry and flooding events. The cluster analysis and principal component analysis (PCA) suggested that genotypes isolated from the same lake displayed a higher genetic similarity than those from different lakes. Both analyses separated C. polypinum isolates into subgroups according to the geographical locations. However, there is only a weak positive correlation between the genetic distance and geographical distance, suggesting a minor effect of geographical distance on the distribution of genetic diversity between populations of C. polypinum at the local level. In conclusion, our studies clearly demonstrated that a single morphospecies may harbor high levels of genetic diversity, and that the degree of resolution offered by morphology as a marker for measuring distribution patterns of genetically distinct entities is too low.
Resumo:
Six polymorphic microsatellites (eight loci) were used to study the genetic diversity and population structure of common carp from Dongting Lake (DTC), Poyang Lake (PYC), and the Yangtze River (YZC) in China. The gene diversity was high among populations with values close to 1. The number of alleles per locus ranged from 2 to 11, and the average number of alleles among 3 populations ranged from 6.5 to 7.9. The mean observed (H (O)) and expected (H (E)) heterozygosity ranged from 0.4888 to 0.5162 and from 0.7679 to 0.7708, respectively. Significant deviations from Hardy-Weinberg Equilibrium expectation were found at majority of the loci and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percent of variance among populations and within populations were 3.03 and 96.97, respectively. The Fst values between populations indicated that there were significant genetic differentiations for the common carp populations from the Yangtze River and two largest Chinese freshwater lakes. The factors that may result in genetic divergence and significant reduction of the observed heterozygosity were discussed.
Resumo:
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.
Resumo:
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP > 0.1 mgL(-1), NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than anti nitrification. When 0.1 mgL(-1)> TP > 0.035 mgL(-1), TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP < 0.035 mgL(-1), inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TIP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.
Resumo:
The fanning of Chinese mitten crab, a quality aquatic product in China and neighbouring Asian countries, has been developing rapidly in China since last decade. It reached a total yield of 3.4 X 10(5) tonnes in 2002. Due to the successive over-stocking year after year, many lakes in the mid-lower Yangtze Basin, the main farming area, are under deterioration, leading to a reduction of crab yield and quality, and, subsequently, a loss of fanning profits. Aiming at a normal development of crab culture and the sustainable use of lakes, an annual investigation dealing with lake environmental factors in relation to stocked crab populations was carried out at 20 farms in 4 lakes. The results show that the submersed macrophyte biomass (B-Mac) is the key factor affecting annual crab yield (CY). Using the ratio of Secchi depth to mean depth (Z(SD)/Z(M)), an easily measured parameter closely correlated to BMac, as driving variable, 10 regression models of maximal crab yields were generated (r(2) ranging 0.49-0.81). Based on the theory of MSY (Maximum Sustainable Yield), in combination with body-weight (BW) and recapture rate (RR) of adult crabs, a general optimal stocking model was eventually formulated. All models are simple and easy to operate. Comments on their applications and prospects are given in brief. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The testate amoebae from nine major lakes in the Yunnan Plateau, southwest China were investigated from August to October 2003. Ninety-four species and subspecies belonging to 21 genera were found, and six species were new to the testate amoebae fauna of China. The most diverse genera were Difflugia (28 species), Centropyxis (22 species), Arcella (12 species), and Euglypha (seven species), while the predominant genera were Centropyxis (42.0%), Difflugia (21.4%), Arcella (9.7%), and Euglypha (8.2%). The most diverse testate amoebae fauna was found in a mesotrophic lake, Lake Yilong (57 species). The lowest species richness was recorded in the two hypereutrophic lakes, Lake Dianchi (7 species) and Lake Xingyun (11 species). The results suggest that the lake trophic status plays an important role in shaping community structure and in determining species diversity of testate amoebae.
Resumo:
Submersed macrophytes in Yangtze lakes have experienced large-scale declines due to the increasing human activities during past decades. To seek the key factor that affects their growth, monthly investigations of submersed macrophytes were conducted in 20 regions of four Yangtze lakes during December, 2001-March, 2003. Analyses based on annual values show that the ratio of Secchi depth to mean depth is the key factor (50% of macrophyte biomass variability among these lakes is statistically explained). Further analyses also demonstrate that the months from March to June are not only the actively growing season for most macrophytes, but the key time the factor acts. Five key-time models yielding higher predictive power (r(2) reaches 0.75,0.76,0.77,0.69 and 0.81) are generated. A comparison between key-time models and traditional synchronic ones indicates that key-time models have higher predictive power. Analyses of transparency thresholds during macrophyte growing season and the limitations of the models are presented. The models and other results may benefit the work concerning submersed macrophyte recovery in Yangtze lakes. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A year-round comparison was made of the picophytoplankton populations in three lakes of different trophic status (oligotrophic, mesotrophic, and hypereutrophic), as well as in experimental enclosures stocked with various densities of fish. Picophytoplankton abundance was significantly different between the hypereutrophic lake and the oligotrophic lake (P<0.018) and between the hypereutrophic lake and the mesotrophic lake (P<0.021), whereas the difference between the mesotrophic and oligotrophic lakes was not significant (P<0.745). The effect of total nitrogen:total phosphorus ratio on the abundance of picophytoplankton was demonstrated in the oligotrophic lake, but such effect did not manifest itself in the other lakes or in the experimental enclosures. The average annual picophytoplankton population sizes in the three lakes in 1995-1998 were correlated with estimated fish abundance (r=0.824, n=9, P=0.006). The results of enclosure experiments demonstrated that the abundance of picophytoplankton increased with the stocking density of fish (r=0.619, n=8, P=0.100).
Resumo:
The original description of Myxobolus longisporus Nie et Li, 1992, the species infecting gills of Cyprinus carpio haematopterus L., is supplemented with new data on the spore morphology and pathogenicity. Spores are elongate pyriform with pointed anterior end, 15.7 (15.5-16.5) mum long, 6.7 (6-8) mum wide and 5.5 mum thick. Sutural ridge is straight and narrow. Mucus envelope is lacking. Two equal-sized elongate pyriform polar capsules are 8.5 mum long and 2.5 mum wide with convergent long axes. Polar filament coiled perpendicularly to the long axis of the capsule makes 9 (8-10) turns. Posterior end of polar capsules exceeds mid-spore by 15-20%. Cyst-like plasmodia are localised in the gill secondary lamellae. The infection is described in adult big host specimens. Gross lesions manifested as dark red colouration of gill tissues were restricted to the ventral part of the first gill arches. Remarkable site specificity (apical part of secondary lamellae) was observed in the course of development of microscopic lesions. M. longisporus is characterised also on the molecular level using sequences of SSU rRNA gene. Phylogenetic analysis based on these sequences has allowed clearer phylogenetic relationships to be established with other species of the genus Myxobolus sequenced to date.
Resumo:
Two species of aspidogastreans, namely Aspidogaster ijimai and A. conchicola, were studied by scanning electron microscopy. In nine lakes and an old river course, the Tian'ezhou oxbow, investigated in the flood plain of the Yangtze River, A. ijimai was obtained from the common carp (Cyprinus carpio) in three lakes, and A. conchicola from the black carp Mylopharyngodon piceus in three lakes and the oxbow. In none of the localities, however, were the two species found together. It is suggested that A. ijimai may be considered as a specialist parasite for the common carp, at least in the flood-plain lakes of the Yangtze River. The two parasites were similar in many aspects of their morphology. Their bodies can both be separated into a dorsal part and a ventral disc, with the body surface of the dorsal part elevated by transverse folds, and the disc subdivided into alveoli by transverse and longitudinal septa, although the number of alveoli was different in the two species. The depression on the ventral surface of the neck region was prominent for both species, and their ventral disc was covered densely with non-ciliated bulbous papillae. The position of mouth, osmo-regulatory pore and marginal organ was also similar for A. ijimai and A. conchicola. However, microridges in the trough of the folds in the neck region and numerous small pits on the upper part of the septa were found exclusively in A. ijimai, but uniciliated sensory papillae in A. conchicola.
Resumo:
Estrogenic activities of samples from two Chinese lakes, Ya-Er Lake and Donghu Lake, were measured by in vitro recombinant yeast assay and found in both lakes polluted with industrial and domestic wastewater. In methanol extracts of lake water samples the estrogen-like activity was higher than in toluene extracts. These results have been inverted for solid samples. Furthermore, the EC50 value of the water samples was close to the original concentration in the lake.
Resumo:
Stocking experiments with Eriocheir sinensis were conducted in two small, shallow lakes to study its growth pattern in 1994-1997. For the initially immature crabs, carapace width (CW) increases from 21.2 +/- 0.4 mm (mean +/- s.e.) for females and 22.3 +/- 0.5 mm for males in January, to 65.4 +/- 0.5 mm for females and 66.9 +/- 0.6 mm for males in October. There is no significant difference in CW and carapace length (CL), although there is a large difference in body weight (BW) between sexes in every month from January to August when crabs are juvenile, however, there are significant differences in CW, CL. and BW between sexes after September when the crabs become sexually mature. The growth curve from January to October fits a logistic equation and may be expressed as CW = 75.7 (1 + exp (0.914 - 0.011t))(-1) for females, and CW = 77.5 (1 + exp (0.889 - 0.011t))-1 for males, where CW is in mm, t in days. For precocious crabs (reaching maturity by the first autumn, CW does not change much from January to July, which indicates that precocious crabs stop growing. Like juveniles, the precocious crabs show no differences in CW and CL, but do show a statistically significant difference in BW between sexes.
Resumo:
Comparative studies on macrozoobenthos were done in 2 shallow mesotrophic lakes in the middle basins of the Yangtze River, China: Lake Biandantang where macrophytes were abundant, and Lake Houhu where macrophytes were scarce Samples were taken monthly at 4 stations in each lake from April 1997 to March 1999, and a total of 67 and 31 tara of macrozoobenthos were recorded in Lake Biandantang and Lake Houhu, respectively. Both annual mean density and biomass of macrozoobenthos were higher in Lake Biandantang than in Lake Houhu: 780 vs 532 indivials/m(2) and 37.1 vs 25.9 g wet mass/m(2), respectively. Abundance of functional feeding groups followed the order: scraper > collector > predator > shredder in Lake Biandantang, and collector > predator > scraper > shredder in Lake Houhu. Only 1 density peak occurred from winter to early spring in Lake Houhu; however, in Lake Biandantang, there were 2 peaks, the winter peak and spring peak. K-dominance curves and Shannon-Wiener, Simpson, and Margelef indices indicated that macrozoobenthos were more diverse in Lake Biandantang than in Lake Houhu Our study suggests that, in shallow lakes, submerged macrophytes are essential for the maintenance of biodiversity of macrozoobenthos mainly because the macrophytes increase habit heterogeneity and availability of suitable food, and may also decrease predation by fish on the macrozoobenthos.
Resumo:
We compared the nutrient dynamics of three lakes that have been heavily influenced by point and non-point source pollution and other human activities. The lakes, located in Japan (Lake Kasumigaura), People's Republic of China (Lake Donghu), and the USA (Lake Okeechobee), all are relatively large(>30 km(2)), very shallow (<4 m mean depth), and eutrophic. In all three lakes we found strong interactions among the sediments, water column, and human activities. Important processes affecting nutrient dynamics included nitrogen fixation, light limitation due to resuspended sediments, and intense grazing on algae by cultured fish. As a result of these complex interactions, simple empirical models developed to predict in-lake responses of total phosphorus and algal biomass to external nutrient loads must be used with caution. While published models may provide 'good' results, in terms of model output matching actual data, this may not be due to accurate representation of lake processes in the models. The variable nutrient dynamics that we observed among the three study lakes appears to be typical for shallow lake systems. This indicates that a greater reliance on lake-specific research may be required for effective management, and a lesser role of inter-lake generalization than is possible for deeper, dimictic lake systems. Furthermore, accurate predictions of management impacts in shallow eutrophic lakes may require the use of relatively complex deterministic modeling tools. (C) 2000 Elsevier Science Ltd. All rights reserved.