235 resultados para Maleic Anhydride Grafting


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work is focused on the factors influencing the intercalation of maleated polypropylene (PPMA) into organically modified montmorillonite (OMMT). Two kinds of PPMA were used to explore the optimal candidate for effective intercalation into OMMT. The grafting degree of maleic anhydride and the viscosity of PPMA have effects on the diffusion of polymer molecules. Moreover, the loading level of surfactant was varied to optimize the modification of montmorillonite because the appropriate loading level can provide a balance between interlayer distance and steric hindrance. The kind of surfactant changes the interaction between OMMT and PPMA, and accordingly the intercalation of PPMA is different, resulting in the discrepancy of the intercalation of PPMA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel method in situ chlorinating-graft copolymerization (ISCGC) of grafting maleic anhydride (MAH) on isotactic polypropylene (iPP) in gas-solid phase was investigated in this paper. Chlorine (Cl-2) was used as initiator, chlorinating agent and termination agent at the same time during the reaction. The iPP was chlorinated as well as grafted with MAH in the reaction process. The product with chlorine and MAH in the same molecule was named as PP-cg-MAH. Existence of PP-cg-MAH was identified by Fourier transform infrared. Thermal behavior and crystallinity of PP-cg-MAH were analyzed by differential scanning calorimetry, X-ray diffraction and polarizing microscope. Influencing factors for the value of graft degree were also discussed. Compared with conventional peroxide initiated graft method, ISCGC revealed higher MAH graft efficiency (33%), and particularly alleviated degradation of iPP. iPP could be grafted successfully and without changing physical properties dramatically through this method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel nonionic surfactant, glycerol monostearic acid monomaleic acid diester (GMMD) was synthesized in our laboratory. Grafting-copolymerization of linear low density polyethylene (LLDPE) with GMMD was carried out by using P-ray irradiation in a twin-screw extruder. Evidence of the grafting of GMMD, as well as its extent, was determined by FT-IR. The effects of monomer concentration, reaction temperature and screw run speed on degree of grafting were studied systematically. The thermal behavior of LLDPE-g-GMMD was investigated by using differential scanning calorimety (DSC). Compared with neat LLDPE, the crystallization temperature (T,) of LLDPE-g-GMMD increased about 3 degrees C, and the melting enthalpy (Delta H-m) decreased with increase of GMMD content. It showed that the arafted GMMD monomer onto LLDPE acted as a nucleating agent. The tensile properties and light transmission of blown films were determined. Comparing with neat LLDPE film, no obvious changes could be found for the tensile strength, elongation at break and right angle tearing strength of LLDPE-g-GMMD film. Accelerated dripping property of film samples was investigated. The dripping duration of LLDPE-g-GMMD film and commercial anti-fog dripping film at 60 degrees C were 52 days and 17 days, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performance of acrylonitrile-butadiene-styrene (ABS) core-shell modifier with different grafting degree, acrylonitrile (AN) content, and core-shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong inter-action between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core-shell ratio of ABS copolymers has important effect on PBT/ABS blends.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Graft copolymerization of maleic anhydride (MA) onto poly(3-hydroxybutyrate) (PHB) was carried out by use of benzoyl peroxide as initiator. The effects of various polymerization conditions on graft degree were investigated, including solvents, monomer and initiator concentrations, reaction temperature, and time. The monomer and initiator concentrations played an important role in graft copolymerization, and graft degree could be controlled in the range from 0.2 to 0.85% by changing the reaction conditions. The crystallization behavior and the thermal stability of PHB and maleated PHB were studied by DSC, WAXD, optical microscopy, and TGA. The results showed that, after grafting MA, the crystallization behavior of PHB was obviously changed. The cold crystallization temperature from the glass state increased, the crystallization temperature from the melted state decreased, and the growth rate of spherulite decreased. With the increase in graft degree, the banding texture of spherulites became more distinct and orderly. Moreover, the thermal stability of maleated PHB was obviously improved, compared with that of pure PHB.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An ethylene-propylene copolymer (EPM) was functionalized with an iso cyanate-bearing unsaturated monomer, allyl(3-isocyanate-4-tolyl) carbamate (TAI), with dicumyl peroxide as an initiator in a xylene solution. Fourier transform infrared (FTIR) was used to confirm the formation of EPM-g-TAI. The peak at 2273 cm(-1), characteristic of -NCO groups in EPM-g-TAI, revealed evidence of grafting. The grafting degree was determined with both chemical titration and FTIR. The grafting degree could be adjusted, and the maximum was over 6 wt % without any gelation. The molar mass distribution of EPM-g-TAI was narrower than that of EPM. The rheological behavior of both EPM-g-TAI and EPM was investigated with a rotational rheometer. The apparent viscosity of EPM-g-TAI was higher than that of EPM and increased with an increasing grafting degree of TAI. Surface analysis by contact-angle measurements showed that contact angles of EPM-g-TAI samples to a given polar liquid decreased with an increasing grafting degree of TAI. We also obtained the dispersion component of the surface free energy (gamma(S)(d)), the polar component of the surface free energy (gamma(S)(d)), and the total surface free energy (gamma(S) = gamma(S)(d) + gamma(S)(p)) of the grafted EPM. These parameters increased with the enhancement of the grafting degree, which gave us a quantitative estimation of the polar contribution of the grafted TAI to the total surface free energy of EPM-g-TAI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polyamide (PA)1010 is blended with a saturated polyolefin elastomer, ethylene-cu-olefin copolymer (EOCP). To improve the compatibility of PA1010 with EOCP, different grafting rates of EOCP with maleic anhydride (MA) are used. The reaction between PA1010 and EOCP-g-MA during extrusion is verified through an extraction test. Mechanical properties, such as notched Izod impact strength, elongation at break, etc., are examined as a function of grafting rate and weight fraction of elastomer. It was found that in the scale of grafting rate (0.13-0.92 wt %), 0.51 wt % is an extreme point for several mechanical properties. Elastomer domains of PA1010/ EOCP-g-MA blends show a finer and more uniform dispersion in the matrix than that of PA1010/EOCP blends. For the same grafting rate, the average sizes of elastomer particles are almost independent on the contents of elastomer, but for different grafting rates, the particle sizes are decreased with increasing grafting rate. The copolymer formed during extrusion strengthens the interfacial adhesion and acts as an emulsifier to prevent the aggregation of elastomer in the process of blending. (C) 2000 John Wiley & Sons, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Blends consisting of high-impact polystyrene (HIPS) as the matrix and polyamide 1010 (PA1010) as the dispersed phase were prepared by mixing. The grafting copolymers of HIPS and maleic anhydride (MA), the compatibilizer precursors of the blends, were synthesized. The contents of the IMA in the grafting copolymers are 4.7 wt % and 1.6 wt %, and were assigned as HAM and LMA, respectively. Different blend morphologies were observed by scanning electron microscopy (SEM); the domain size of the PA1010 dispersed phase in the HIPS matrix of compatibilized blends decreased comparing with that of uncompatibilized blends. For the blend with 25 wt % HIPS-g-MA component, the T-c of PA1010 shifts towards lower temperature, from 178 to 83 degrees C. It is found that HIPS-g-MA used as the third component has profound effect on the mechanical properties of the resulting blends. This behavior has been attributed to the chemical reaction taking place in situ during the mixing between the two components of PA1010 and HIPS-g-MA. (C) 2000 John Wiley & Sons, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The graft copolymer of high-impact polystyrene (HIPS) grafted with maleic anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by infrared analyses, and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with polyamide 1010 (PA1010) during melt mixing of the two components. The compatibility of HIPS-g-MA. in the HIPS/PA1010 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical behavior of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA1010. The tensile mechanical properties of the prepared blends were investigated, and the fracture surfaces of the blends were examined by means of the scanning electron microscope. The improved adhesion in a 15% HIPS/75% PA1010 blend with 10% HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA1010 connecting HIPS particles was observed. (C) 1999 John Wiley & Sons, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The modification of polypropylene (PP) was accomplished by melt grafting glycidyl methacrylate (GMA) on its molecular chains. The resulting PP-g-GMA was used to prepare binary blends of polyamide 1010 (PA1010) and PP-g-GMA. Different blend morphologies were observed by scanning electron microscopy (SEM) according to the nature and content of PA1010 used. Comparing the PA1010/PP-g-GMA and PA1010/PP binary blends, the size of the domains of PP-g-GMA were much smaller than that of PP at the same compositions. It was found that mechanical properties of PA1010/PP-g-GMA blends were obviously better than that of PA1010/PP blends, and the mechanical properties were significantly influenced by wetting conditions for uncompatibilized and compatibilized blends. A different dependence of the flexural modulus on water was found for PA1010/PP and PA1010/PP-g-GMA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/PP-g-GMA blends. Thermal and rheological analyses were performed to confirm the possible chemical reactions taking place during the blending process. (C) 1997 John Wiley & Sons, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The modification of ethylene-propylene copolymer (EPM) has been accomplished by melt grafting of maleic anhydride (MAH) molecules promoted by radical initiators. The resulting EPM-g-MAH and EPM have been used to obtain binary nylon 1010/EPM or nylon 1010/EPM-g-MAH blends by melt mixing. It was found that the EPM-g-MAH copolymer used as the second component has a profound effect upon the properties of the resulting blends. This behavior has been attributed to a series of chemical and physicochemical interactions taking place between the two components. The interactions are due to the presence of the anhydride functionality on the copolymer and do not occur when this functionality is absent. The interaction has been confirmed by Fourier-transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work deals with the effect of compatibilizer on the morphological, thermal, rheological, and mechanical properties of polypropylene/polycarbonate (PP/ PC) blends. The blends, containing between 0 to 30 vol % of polycarbonate and a compatibilizer, were prepared by means of a twin-screw extruder. The compatibilizer was produced by grafting glycidyl methacrylate (GMA) onto polypropylene in the molten state. Blend morphologies were controlled by adding PP-g-GMA as compatibilizer during melt processing, thus changing dispersion and interfacial adhesion of the polycarbonate phase. With PP-g-GMA, volume fractions increased from 2.5 to 20, and much finer dispersions of discrete polycarbonate phase with average domain sizes decreased from 35 to 3 mu m were obtained. The WAXD spectra showed that the crystal structure of neat PP was different from that in blends. The DSC results suggested that the degree of crystallization of PP in blends decreased as PC content and compatibilizer increased. The mechanical properties significantly changed after addition of PP-g-GMA. (C) 1997 John Wiley & Sons, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grafting of acrylamido tertiary butyl sulfonic acid (ATBS) onto ethylene-polypropylene copolymer (EPM) was carried out by using a reactive processing method. The grafting copolymer was characterized by means of WAXD, FT-IR, ESCA, and DSC. Improved thermal stability was observed for graft copolymer. Effects of the monomer and the initiator concentrations, reactive temperature, and time on grafting degree were investigated. (C) 1997 John Wiley & Sons, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Possible changes in the structure and properties of maleated polyethylene (HDPE-MA) at different degrees of grafting (D.G.) were examined. At the level of 1.6 maleic anhydride (MA)/100 ethylene units E, 70-80% of crystallinity of the parent PE was retaine