111 resultados para MISCIBILITY GAPS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly(ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12 mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK and more are immiscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two T(g)s were observed for the 50/50 blend of phenoxy with the copolymer containing 17 mol % EEK, whereas a single composition-dependent T-g appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miscibility, crystallization, and mechanical properties of blends of thermosetting polyimide PMR-15 and phenolphthalein poly(ether ketone) (PEK-C) were examined. With the exception of the 90/10 blend, which has two glass transition peaks, all the blends with PMR-15 less than 90 wt % are miscible in the amorphous state according to DMA results. Addition of PEK-C hindered significantly the crystallization of PMR-15, indicating that there must exist some kind of interaction between molecular chains of PMR-15 and those of PEK-C. The semi-IPN system of PMR-15/PEK-C blends exhibits good toughness. Two distinct microphases, interweaving at the phase boundaries, were found in the PMR-15/PEK-C 60/40 blend. The toughness effect of the blends is discussed in terms of the interface adhesion between the two distinct phases and the domain sizes of the phases. The relation between miscibility and toughness of the blends was investigated. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blends of polyethersulfone and phenoxy were prepared by melt mixing in a Brabender-like apparatus. The specimens for measurements were made by compression molding and then were water-quenched at room temperature under pressure. The tensile strength, tensile modulus, elongation at break and yield, density, thermal analysis, and dynamic mechanical properties were each measured. The dependence of tensile strength, tensile modulus, elongation at break and yield, and density on composition was obtained. The relationship between tensile modulus and elongation at break and yield and speed of the crosshead at different weight ratios of the blends is shown. The effects of composition and miscibility on the mechanical properties are discussed. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compatibility, morphology, crystalline structure and mechanical properties of the blends of a thermosetting polyimide with thermoplastic polyimides consisting of dianhydrides of different lengths have been studied by the use of dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS) techniques. The results of our research show that the blends change from compatible to semi-compatible when the difference between the length of the dianhydrides of the two components increases. Addition of a thermoplastic polyimide inhibits the crystallization of the thermosetting component. However, this effect decreases with increasing length of the dianhydrides and the distribution of the molecules of the thermoplastic polyimide component changes from interlamellar to interfibrillar. Impact strength and morphology of the fractured surfaces indicate that among the semiinterpenetrating polymer networks (semi-IPN) obtained the toughening effect of the partially compatible one is the best. The results are discussed in terms of charge transfer interaction between imide group and p-phenylene group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility and morphology of polyimide/polyimide blends, PEI-E/PTI-E(a)) and PBPI-E/IPTI-E(a)), have been studied by means of C-13 CPMAS NMR technique. The results indicate that PEI-E/PTI-E blends are miscible on a molecular level, but molecular aggregation exists in pure PBPI-E specimen as well as PBPI-E/PTI-E blends with high content of PBPI-E, which vanishes in the blends with high content of PTI-E. When the content of PBPI-E is higher than that of PTI-E, the addition of PTI-E to PBPI-E has almost no effect on the size of the PBPI-E rigid domains, but has a large effect on the populations of the PBPI-E rigid domains. It is the intermolecular charge-transfer interaction that plays a critical role in the miscibility of PEI-E/PTI-E and PBPI-E/PTI-E blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anti-aging performance of blends of polystyrene (PS), styrene-butadiene triblock copolymers (SBS), and PS/styrene-butadiene (SB)-4A (Carm star SE block copolymer) has been studied by means of C-13 NMR techniques. It is found that the anti-aging performance of these kinds of blends largely depends on their miscibility with PS of different molecular weight M(PS). The larger the quantities of PS solubilized in polybutadiene (PBD) domains, the better the anti-aging performance of the blends. It is also found that the anti-aging performance of these blends has dependence on molecular architectures of the SE block copolymers. For the aged blends, the double bonds of PBD were broken, meanwhile serious cross-linking networks formed in the blends. The proposed anti-aging mechanism is that the PS solubilized in PBD domains can efficiently prevent oxygen molecules from diffusing into PBD domains, therefore, successfully stop the oxidative process of PBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intrinsic viscosities of poly(ethylene oxide)-poly(vinyl acetate) blends (PEO-PVA) have been measured in chloroform as a function of molecular weights of blend components and compositions. The interaction parameters Delta b obtained from the modified Krigbaum and Wall theory and the differences between the intrinsic viscosities of polymer mixtures and the weight-average intrinsic viscosities of the two blend components were both used to characterize the extent of miscibility of the blend mixtures. (C) 1995 John Wiley and Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility of blends of PMMA with SMA (50 wt% MA) has been investigated by means of NMR, FTIR and DSC techniques. The results indicate that the SMA/PMMA blends are miscible on a molecular level, and there are strong intermolecular interactions between the phenyl groups in SMA and carbonyl groups in PMMA. It is the intermolecular interactions instead of the intramolecular repulsion forces within the SMA copolymer that make the SMA/PMMA blends miscible. It is also found that the strength of the intermolecular interactions to some degree depends on the compositions of the blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibilities of blends of homopolystyrene/styrene-butadiene/styrene (PS/SBS) and PS/SB-4A (4-arm star block copolymer) have been studied by dynamic mechanical analysis (DMA) and C-13 CPMAS NMR techniques. The results indicate that the miscibilities o

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of styrene-butadiene triblock (SBS) and styrene-butadiene four-arm star block (SB-4A) copolymers and their blends with homopolystyrene (PS) of different molecular weights, MPS, have been investigated by means of small-angle X-ray scatt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton spin-spin relaxation times (T-2(H)) at different temperatures (from 160 to 390 K) have been determined for polystyrene (PS) and four-arm star styrene-butadiene block copolymer (SB-4A) and its blends with PS of different molecular weights (M(PS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excimer fluorescence of a triblock copolymer, styrene-butadiene-styrene (SBS) containing 48 wt% polystyrene was used to investigate its miscibility with poly(vinyl methyl ether) (PVME). The excimer-to-monomer emission intensity ratio I(M)/I(E) can be used as a sensitive probe to determine the miscibility level in SBS/PVME blends: I(M)/I(E) is a function of PVME concentration, and reaches a maximum when the blend contains 60% PVME. The cloud point curve determined by light scattering shows a pseudo upper critical solution temperature diagram, which can be attributed to the effect of PB segments in SBS. The thermally induced phase separation of SBS/PVME blends can be observed by measuring I(M)/I(E), and the phase dissolution process was followed by measuring I(M)/I(E) at different times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and miscibility of polyimide PBPI-E/PTI-E blends were studied by wide- and small-angle X-ray scattering and dynamic mechanical analysis, where PBPI-E is a biphenyl-dianhydride-based polyimide, and PTI-E is a polyimide from 4,4'-thiodiphthalic anhydride and 4,4'-oxydianiline. The results obtained show that there exists a paracrystalline structure in the blends with high content of PBPI-E, but this does not affect the miscibility of the blends. The blends are miscible over the entire composition range, since only one T(g) was observed for each blend. Meanwhile, the segregation of PTI-E during crystallization of PBPI-E in the blends is interlamellar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of crystallizable poly(vinyl alcohol) (PVA) with poly(N-vinyl-2-pyrrolidone) (PVPy) were studied by C-13 cross-polarization/magic angle spinning (CP/MAS) n.m.r. and d.s.c. The C-13 CP/MAS spectra show that the blends were miscible on a molecular level over the whole composition range studied, and that the intramolecular hydrogen bonds of PVA were broken and intermolecular hydrogen bonds between PVA and PVPy formed when the two polymers were mixed. The results of a spin-lattice relaxation study indicate that blending of the two polymers reduced the average intermolecular distance and molecular motion of each component, even in the miscible amorphous phase, and that addition of PVPy into PVA has a definite effect on the crystallinity of PVA in the blends over the whole composition range, yet there is still detectable crystallinity even when the PVPy content is as high as 80 wt%. These results are consistent with those obtained from d.s.c. studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) with a series of poly(ethylene oxide-co-propylene oxide) (EPO) has been studied. It was found that the critical copolymer composition for achieving miscibility with phenoxy around 60-degrees-C is about 22 mol % ethylene oxide (EO). Some blends undergo phase separation at elevated temperatures, but there is no maximum in the miscibility window. The mean-field approach has been used to describe this homopolymer/copolymer system. From the miscibility maps and the melting-point depression of the crystallizable component in the blends, the binary interaction energy densities, B(ij), have been calculated for all three pairs. The miscibility of phenoxy with EPO is considered to be caused mainly by the intermolecular hydrogen-bonding interactions between the hydroxyl groups of phenoxy and the ether oxygens of the EO units in the copolymers, while the intramolecular repulsion between EO and propylene oxide units in the copolymers contributes relatively little to the miscibility.