155 resultados para MESOPOROUS SILICA FILMS
Resumo:
Silica and Merrifield resin were used as carriers for the support of alpha-diimine nickel(II) precatalysts for ethylene polymerization. The alpha-diimine ligands containing allyl were modified by introducing the reactive Si-Cl end-group, allowing their immobilization via a direct reaction of the Si-Cl groups with the silanols on silica surface or the hydroxyls on the ethanolamine-modified Merrifield resin. The resulting supported alpha-diimine ligands were characterized by analytical and spectroscopic techniques (NMR and Fr-IR).
Resumo:
A series of dysprosium complex doped xerogels with the same first ligand (acac = acetylacetone) and different neutral ligands were synthesized in situ via a sol-gel process. The Fourier transform infrared (FTIR) spectra, diffuse reflectance (DR) spectra, and near-infrared (NIR) luminescent properties of dysprosium complexes and dysprosium complex doped xerogels are described in detail. The results reveal that the dysprosium complex is successfully synthesized in situ in the corresponding xerogel. Excitation at the maximum absorption wavelength of the ligands resulted in the characteristic NIR luminescence of the Dy3+ ion, which contributes to the energy transfer from the ligands to the central Dy3+ ion in both the dysprosium complexes and xerogels via an antenna effect.
Resumo:
In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.
Resumo:
One-step synthesis of Ru (bpy)(3) Cl-2-immobilized (bpy = 2,2'-bipyridine) silica nanoparticles (Ru-silica nanoparticles) for use in electrogenerated-chemiluminescence (ECL) detection is reported. Ru-silica nanoparticles are prepared by using the Stober method. Compared with free Ru(bpy)(3)Cl-2, Ru-silica nanoparticles are seen to exhibit a red-shift of the UV-vis absorbance peak and a longer fluorescence lifetime, which are attributed to the electrostatic interaction of Ru(bpy)(3)(2+) and silica. Because silica nanoparticles are used as immobilization matrices, the surfaces of Ru-silica nanoparticles are easily modified or functionalized via the assembly of other nanoparticles, such as Au. For ECL detection, Au-colloid-modified Ru-silica nanoparticles are immobilized on a 3-mercaptopropyl-trimethoxysilane-modified indium tin oxide electrode surface by Au-S interaction; the surface concentration of electroactive Ru(bpy)(3)Cl-2 is obviously higher than that in silica films.
Resumo:
Organo-functionalized MCM-41 containing non-covalently linked 1,10-phenanthroline (denoted as Phen-MCM-41) was synthesized by template-directed co-condensation of tetraethoxysilane and the modified phenanthroline (denoted as Phen-Si). XRD, FTIR, UV/VIS spectroscopy as well as luminescence spectroscopy were employed to characterize Phen-MCM-41. No disintegration or loss of the Phen-Si during the solvent extraction procedure could be observed. When monitored by the ligand absorption wavelength (272 nm), the undoped MCM-41 produces a broad band emission centered at 450 run, whereas europium (III) doped Phen-MCM-41 displays the emission of the Eu3+, i.e., D-5(0) --> F-7(J) (J = 0, 1, 2, 3, 4) transition lines due to the energy transfer from the ligands to Eu3+ as well as a broad band emission centered at 442 nm.
Resumo:
In this study, silica-based transparent organic-inorganic hybrid films were prepared by the sol-gel method. Tetraethoxysilane and 3-(trimethoxysilyl)propyl methacrylate were used as the inorganic and organic compounds, respectively. Lanthanide complexes [Eu(phen)(2)]Cl-3 were incorporated into the organically modified silicates (ORMOSIL) and the luminescence properties of the resultant hybrid films (ORMOSIL:[Eu(phen)(2)]Cl-3) were characterized. The relative quantum efficiency was observed higher and the lifetimes were longer in hybrid films than those in pure silica films. Furthermore, thermal stability of hybrid films incorporating various concentration of Eu(III) complex was studied. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Supported catalysts, consisting of SiW12 immobilized on hexagonal mesoporous silica (HMS) and its aluminum-substituted derivative (MCM-41) with different loadings and calcination temperatures, have been prepared and characterized by X-ray diffraction, FT-IR and NH3-temperature programmed desorption. It is shown that SiW12 retains the Keggin structure on the mesoporous molecular sieves and no HPA crystal phase is developed, even at SiW12 loadings as high as 50 wt%. In the esterification of acetic acid by n-butanol, supported catalysts exhibit a higher catalytic activity and stability and held some promise of practical application. In addition, experimental results indicate that the loaded amount of SiW12 and the calcination temperatures have a significant influence on the catalytic activity, and the existence of aluminum has also an effect on the properties of supported catalysts.
Resumo:
Ordered mesoporous carbons composed of arrays of nanotubes have been synthesized using ordered mesoporous silica templates via catalytic chemical vapor deposition. The ordered carbons possess bimodal pores, namely, the pores arise from the "replica" of frameworks of the template and the pores correspond to carbon nanotubes formed in the channels of the template (see Figure).
Resumo:
A novel sol-gel process has been developed for the synthesis of amorphous silica-aluminas with controlled mesopore distribution without the use of organic templating agents, e.g., surfactant molecules. Ultrasonic treatment during the synthesis enables production of precursor sols with narrow particle size distribution. Atomic force microscopy analysis shows that these sol particles are spherical in shape with a narrow size distribution (i.e., 13-25 nm) and their aggregation during the gelation creates clusters containing similar sized interparticle mesopores. A nitrogen physiadsorption study indicates that the mesoporous materials containing different Si/Al ratios prepared by the new synthesis method has a large specific surface area (i.e., 587-692 m(2)/g) and similar pore sizes of 2-11 nm. Solid-state Al-27 magic angle spinning (MAS) NMR shows that most of the aluminum is located in the tetrahedral position. A transmission electron microscopy (TEM) image shows that the mesoporous silica-alumina consists of 12-25 nm spheres. Additionally, high-resolution TEM and electron diffraction indicate that some nanoparticles are characteristic of a crystal, although X-ray diffraction and Si-29 MAS NMR analysis show an amorphous material.