39 resultados para Low-alloy steels
Resumo:
In this paper, an investigation on the micro-structure of an Fe-base oxide-dispersion-strengthened (ODS) alloy irradiated with high-energy Ne-20 ions to different doses at a temperature around 0.5T(m) (T-m is the melting point of the alloy) is presented. Investigation with the transmission electron microscopy found that the accelerated growth of voids at grain-boundaries, which is usually a concern in conventional Fe-base alloys under conditions of inert-gas implantation, was not observed in the ODS alloy irradiated even to the highest dose (12000 at.ppm Ne). The reason is ascribed to the enhanced recombination of point defects and strong trapping of Ne atoms at the interfaces of the nano-scale oxide particles in grains. The study showed that ODS alloys have good resistance to the high-temperature inter-granular embrittlement due to inert-gas accumulation, exhibiting prominence of application in harsh situations of considerable helium production at elevated temperatures like in a fusion reactor.
Resumo:
The structure and electrochemical characteristics of melted composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% LaNi4Al0.4Mn0.3Co0.3 (x = 0, 1, 5) hydrogen storage alloys have been investigated systematically. XRD shows that though the main phase of the matrix alloy remains unchanged after LaNi4Al0.4Mn0.3Co0.3 alloy is added, a new specimen is formed. The amount of the new specimen increases with increasing x. SEM-EDS analysis indicates that the V-based solid solution phase is mainly composed of V, Cr and Ni; C14 Laves phase is mainly composed of Ni, Zr and V; the new specimen containing La is mainly composed of Zr, V and Ni. The electrochemical measurements suggest that the activation performance, the low temperature discharge ability, the high rate discharge ability and the cyclic stability of composite alloy electrodes increase greatly with the growth of x.
Resumo:
The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.
Resumo:
The RENi3 (RE = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Y) series compounds have been prepared by arc melting constituent elements under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes, depending on different rare earth (RE) element. The electrochemical characteristics, including the electrochemical capacity, P-C isotherms, high rate chargeability (HRC) and high-rate dischargeability (HRD), of these alloys have been studied through the charge-discharge recycle testing at different temperatures, charge currents and discharge currents. The results show that YNi3 has the largest cell volume, smallest density, and moreover, it shows more satisfactory electrochemical characteristics than other alloys, including discharge capacity, HRC, HRD and low temperature dischargeablity.
Resumo:
A poly(butylene terephthalate) (PBT)/linear low-density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method, For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE-g-AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE-g-AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE-g-AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/ T,T PE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE-g-AA decreased.
Resumo:
Hot dip Zn-Al alloy coating performs better than hot dip galvanized coating and 55% Al-Zn-Si coating as well with regard to general seawater corrosion protection. A characterization of the corrosion products on Zn-Al alloy coating immersed in dynamic aerated seawater has been performed mainly based on transmission electron microscopy (TEM) for morphological analysis and X-ray diffraction (XRD) technique for crystalline phase identification. The XRD and TEM analyses showed that the corrosion products mainly were typical nanometer Zn4CO3(OH)(6).H2O, Zn-5(OH)(8)Cl-2 and Zn6Al2CO3(OH)(16). 4H(2)O microcrystals. This probably is connected to the co-precipitation of Zn2+ and Al3+ ions caused by adsorption. Zn-Al alloy coating being suffered seawater attacks, AI(OH)(3) gel was first produced on the coating surface. Zn and Al hydroxides would co-precipitate and form double-hydroxide when the concentration of adsorbed Zn2+ ions by the newly produced gel exceeded the critical degree of supersaturation of the interphase nucleation. However, because the growth of the crystals was too low to keep in step with the nucleation, a layer of nano-crystalline corrosion products were produced on the surface of the coating finally. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The heat capacities of Wood alloy have been measured with an automatic adiabatic calorimeter over the temperature range of 80 similar to 360 K. The thermodynamic data of solid-liquid phase transition have been obtained from the heat capacity measurements. The melting temperature, enthalpy and entropy of fusion of the substance are 345.662 K, 18.47 J.g(-1) and 0.05343 J.g(-1).K-1, respectively. The necessary thermal data are provided for the low temperature thermodynamic study of the alloy.
Resumo:
The structure and properties of Sm overlayer and Sm/Rh surface alloy have been investigated with Auger electron spectroscopy (AES), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption spectroscopy (TDS). The growth of Sm on Rh(100) at room temperature (RT) appears following the Stranski-Krastanov growth mode and only the trivalent state Sm is observed from XPS results. Thermal treatment of the Sm film at 900 K leads to the formation of ordered surface alloy which shows the c(5 root2 x root2)R45 degrees and c(2 x 2) LEED patterns. Annealing the Sm film at temperature above 400 K makes the binding energy (B.E.) of Sm 3d(5/2) shift to higher energy by 0.7 eV, which indicates charge transfer from Sm to Rh(100) substrate, causing the increase of CO desorption temperature.