40 resultados para Long Distance Anaphora
Resumo:
Expansive soil is a kind of typical unsaturated soil with characteristics of high swelling-shrinking deformation, cracks and over consolidation. It is very harmful to civil engineering, As a new processing method deal with expansive soil, Chemistry treatment has widespread applied in developed countries such as Europe and America, and also gained remarkable result. Based on the embankment filling soil improving testing projects in Meng-Xin freeway, this paper proposed a new processing method to expansive soil embankment wrapped with PAS-treated soil, experimental study of expansive soil chemical improved by PAS is been carried out. The water content change is the external factor which causes expansive soil to have swelling-shrinkage deformation. this reflected that the soil body swelling-shrinkage characteristic mainly depends on its mineral ingredient and the soil-water mutual function. This paper takes expansive soil as one kind of ordinary high plastic clay from angle of clay-water mutual function explained the expansive soil swelling-shrinkage deformation mechanism on microscopic. And take this swelling-shrinkage mechanism as the master line, Cooperates with the China Academy of Chemistry, we developed the new method PAS treatment, trough ionic exchange, joint, package and flocculation, the stronger static electricity function weakened the level through adsorption and the stronger static electricity function, PAS can weakened the negative charge repulsion between levels, causes the electric potential to reduce, diffusion layer thickness to be thinner, and improves the water affinity performance of expansive soil effectively. Moreover the space network architecture compromised with PAS and soil enhanced the joint strength between the clay particles , enable the soil body to have comparatively high strength and the distortion rate. pointed proposed the PAS modified principle. Combine with the construction of experimented road, this paper sums up and presents the construction craft and technology requirement of PAS treatment to expansive soil embankment. Through many experimental studied the basic physical property, the intensity characteristic and water stability changes of expansive soil and PAS-treated soil. The results of study indicate that adding lime into the expansive soil can reduce the content of clay gain obviously, reduce the plasticity notably, increase the strength greatly, control the property of swelling and shrinking effectively, and can meliorate the stability of sucking water clearly. Simultaneity PAS don’t change the cultivate capacity of the soil, the modified slope of the embankment can adopt plant fixed slope method as ecology protection. Finally the processing effect of use different treatment has analyzed through numerical simulation, summarized the PAS chemical wrapping treatment process in the actual project application, and appraised its processing effect and the project efficiency. The research indicated that PAS chemical treatment is one effective method to improve expansive soil. Compare with long-distance replacement, especially in the high plastic expansive soil massive distribution area, PAS treatment has the very greatly economical superiority to be promoted. The study in the paper not only afforded technique method to Meng-Xin expressway construction but also important for improvement of the expressway construction theory in swelling soil areas. Key words: PAS; expansive soil; swelling-shrinkage deformation mechanism; wrapping embankment; chemical modified treatment.
Resumo:
Sangequan Uplift in Junggar Basin is an inherited positive structure, which has undergone many times of violent tectonic movements, with high tectonic setting, and far away from the oil-source sag, reservoir forming condition is complex. Combining sequence stratigraphy, depositional facies, reservoir formation theory with seismic and well logging analysis, this paper conducted integrated study on the hydrocarbon migration, accumulation, entrapment conditions, the reservoir forming dynamics and the forming model, and acquired the following recognition: (1) The special reservoir formation conditions that enable Sangequan Uplift to form a giant oil-gas field of over 100 million tons of reserves are as follows: (D Deltaic frontal sandbody is developed in Jurassic Xishanyao Formation, Toutunhe Formation and Lower Cretaceous Hutubihe Formation, with good reservoir quality;? Abundant hydrocarbon resources are found in Western Well Pen-1 Sag, which provides sufficient oil sources for reservoir formation of Sagequan Uplift; ?The unconformity-fault-sandbody system has formed a favorable space transporting system and an open conduit for long-distance hydrocarbon migration; ?fault, low amplitude anticline and lithological traps were well developed, providing a favorable space for hydrocarbon accumulation. (2) The most significant source beds in the Western Well Pen-1 Sag are the Mid-Permian Lower Wuerhe Formation and Lower-Permian Fengcheng Formation. The oil in the Well Block Lu-9 and Shinan Oilfield all originated from the hydrocarbon source beds of Fengcheng Formation and Lower Wuerhe Formation in the Western Well Pen-1 Sag and migrated through Jidong and Jinan deep faults linking unconformity of different regions from sources to structural highs of the uplift and shallow horizons. (3) There were 2 reservoir formation periods in District Sangequan: the first was in late Cretaceous during which the upper part of Xishanyao Formation and Toutunhe Formation; the second was in Triassic, the main resources are high-maturity oil and gas from Fengcheng Formation and Wuerhe Formation in Western Pen-1 Well sag and the gas from coal measure strata of Xishanyao Formation, that were accumulated in Hutubihehe Formation. (4) Model of the hydrocarbon migration, accumulation, reservoir formation of the study area are categorized as three types starting from the hydrocarbon source areas, focusing on the faults and unconformity and aiming at reservoirs: ① Model of accumulation and formation of reservoir through faults or unconformities along the "beam" outside source; ②Model of migration, accumulation and reservoir formation through on-slope near source;③Model of migration, accumulation and reservoir formation of marginal mid-shallow burial biogas-intermediate gas. (5) Pinchout, overlap and lithologic traps are developed in transitional zones between Western Well Pen-1 sag and Luliang uplift. Many faulted blocks and faulted nose-like traps are associated with large structures on Sangequan uplift. Above traps will be new prospecting areas for further hydrocarbon exploration in future.
Resumo:
A new double-layer grating template is designed to reduce the out-of-band loss as much as 1.8dB when the loss of LP03 reaches 10.2 dB. Meanwhile, we propose a method to remove the sidelobes in the transmission spectra by the adjustment of the thickness of pressure plates. The plate-thickness-induced shift of resonant wavelength and the attenuation of loss peak intensity when removing sidelobes can be modified by the fibre distance and contact point on the pressure plates.
Resumo:
The mechanism of hole charge transfer in DNA of various lengths and sequences is investigated based on a partially coherent tunneling theory (Zhang et al., J Chem Phys 117:4578, 2002), where the effects of phase-breaking in adenine-thymine and guanine-cytosine base pairs are treated on equal foot. This work aims at providing a self-consistent microscopic interpretation for rate experiments on various DNA systems. We will also clarify the condition under which the simple superexchange-mediated-hopping picture is valid, and make some comments on the further development of present theory.
Resumo:
A quantum chemistry based Green's function formulation of long-range charge transfer in deoxyribose nucleic acid (DNA) double helix is proposed. The theory takes into account the effects of DNA's electronic structure and its incoherent interaction with aqueous surroundings. In the implementation, the electronic tight-binding parameters for unsolvated DNA molecules are determined at the HF/6-31G* level, while those for individual nucleobase-water couplings are at a semiempirical level by fitting with experimental redox potentials. Numerical results include that: (i) the oxidative charge initially at the donor guanine site does hop sequentially over all guanine sites; however, the revealed rates can be of a much weaker distance dependence than that described by the ordinary Ohm's law; (ii) the aqueous surroundings-induced partial incoherences in thymine/adenine bridge bases lead them to deviate substantially from the superexchange regime; (iii) the time scale of the partially incoherent hole transport through the thymine/adenine pi stack in DNA is about 5 ps. (C) 2002 American Institute of Physics.
Resumo:
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.
Resumo:
The scattering of linear water waves by an infinitely long rectangular structure parallel to a vertical wall in oblique seas is investigated. Analytical expressions for the diffracted potentials are derived using the method of separation of variables. The unknown coefficients in the expressions are determined through the application of the eigenfunction expansion matching method. The expressions for wave forces on the structure are given. The calculated results are compared with those obtained by the boundary element method. In addition, the influences of the wall, the angle of wave incidence, the width of the structure, and the distance between the structure and the wall on wave forces are discussed. The method presented here can be easily extended to the study of the diffraction of obliquely incident waves by multiple rectangular structures.
Resumo:
The available experimental results have shown that in time-periodic motion the rheology of fluid mud displays complex viscoelastic behaviour. Based on the measured rheology of fluid mud from two field sites, we study the interaction of water waves and fluid mud by a two-layered model in which the water above is assumed to be inviscid and the mud below is viscoelastic. As the fluid-mud layer in shallow seas is usually much thinner than the water layer above, the sharp contrast of scales enables an approximate analytical theory for the interaction between fluid mud and small-amplitude waves with a narrow frequency band. It is shown that at the leading order and within a short distance of a few wavelengths, wave pressure from above forces mud motion below. Over a Much longer distance, waves are modified by the accumulative dissipation in mud. At the next order, infragravity waves owing to convective inertia (or radiation stresses) are affected indirectly by mud motion through the slow modulation of the short waves. Quantitative predictions are made for mud samples of several concentrations and from two different field sites.
Resumo:
Long lasting phosphorescence (LLP) was observed in Eu2+, Ce3+ co-doped strontium borate glasses prepared under the reducing atmosphere due to the emission of both Eu2+ and Ce3+. The methods of photoluminescence, thermoluminescence and phosphorescence were used to study the samples, and possible mechanism was suggested. The co-doping of Ce3+ ions poisoned the phosphorescence emission of Eu2+ because of the competition to obtain the trapped electron. The phosphorescence of Ce3+ in the sample decays more quickly than that of Eu2+, which is suggested for the reason that the emission energy of Ce3+ is higher or the distance between Ce3+ and electron traps of the glasses is longer.
Resumo:
To clarify the response of soil organic carbon (SOC) content to season-long grazing in the semiarid typical steppes of Inner Mongolia, we examined the aboveground biomass and SOC in both grazing (G-site) and no grazing (NG-site) sites in two typical steppes dominated by Leymus chinensis and Stipa grandis, as well as one seriously degraded L. chinensis grassland dominated by Artemisia frigida. The NG-sites had been fenced for 20 years in L. chinensis and S. grandis grasslands and for 10 years in A. frigida grassland. Above-ground biomass at G-sites was 21-35% of that at NG-sites in L. chinensis and S. grandis grasslands. The SOC, however, showed no significant difference between G-site and NG-site in both grasslands. In the NG-sites, aboveground biomass was significantly lower in A. frigida grassland than in the other two grasslands. The SOC in A. frigida grassland was about 70% of that in L. chinensis grassland. In A. frigida grassland, aboveground biomass in the G-site was 68-82% of that in the NG-site, whereas SOC was significantly lower in the G-site than in the NG-site. Grazing elevated the surface soil pH in L. chinensis and A. frigida communities. A spatial heterogeneity in SOC and pH in the topsoil was not detected the G-site within the minimal sampling distance of 10 m. The results suggested that compensatory growth may account for the relative stability of SOC in G-sites in typical steppes. The SOC was sensitive to heavy grazing and difficult to recover after a significant decline caused by overgrazing in semiarid steppes.