321 resultados para Light Trapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-trapping, stopping, and absorption of an ultrashort ultraintense linearly polarized laser pulse in a finite plasma slab of near-critical density is investigated by particle-in-cell simulation. As in the underdense plasma, an electron cavity is created by the pressure of the transmitted part of the light pulse and it traps the latter. Since the background plasma is at near-critical density, no wake plasma oscillation is created. The propagating self-trapped light rapidly comes to a stop inside the slab. Subsequent ion Coulomb explosion of the stopped cavity leads to explosive expulsion of its ions and formation of an extended channel having extremely low plasma density. The energetic Coulomb-exploded ions form shock layers of high density and temperature at the channel boundary. In contrast to a propagating pulse in a lower density plasma, here the energy of the trapped light is deposited onto a stationary and highly localized region of the plasma. This highly localized energy-deposition process can be relevant to the fast ignition scheme of inertial fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the group velocity of the probe light pulse in an open V-type system with spontaneously generated coherence. We find that, not only varying the relative phase between the probe and driving pulses can but varying the atomic exit rate or incoherent pumping rate also can manipulate dramatically the group velocity, even make the pulse propagation switching from subluminal to superluminal; the subliminal propagation can be companied with gain or absorption, but the superluminal propagation is always companied with absorption. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an experiment of trapping of neutral Rb-87 atoms on a, self-made atomchip. The H-shaped atomchip is made by magnetron sputtering technology, which is different from the atomchip technology of other teams. We collect 3 x 10(6) Rb-87 atoms in the mirror magneto-optical trap (MOT) using the external MOT coils, and 1 X 10(5) Rb-87 atoms are transferred to U-MOT using U-shaped wire in chip and a pair of bias coils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations. The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measure the signal amplitude and linewidth of a dark line in coherent population trapping in the Rb vapour cell filled with mixed buffer gas N-2 and Ar as a function of cell temperature. We find that the dark line signal amplitude increases with temperature up to a maximum at 49 degrees C and then drops at higher temperatures due to quenching effects of N-2. The linewidth of the dark line remains basically constant, at 1080 Hz. We also measure the linewidth of the dark line as a function of laser intensity. The linewidth increases linearly with laser intensity. An intrinsic linewidth (FWHM=896 Hz at 3.4 GHz) of the Rb cell is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous - wave (cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the dressed-atom approach, we discuss a two-dimensional (2D) radio-frequency trap for neutral atoms, in which the trap potential derives from the magnetic-dipole transition among the hyperfine Zeeman sublevels. By adjusting the detuning of the radiation from resonance, the trapping states will be changed predominantly from the bare states Of m(FgF) > 0 to other states of m(FgF) < 0, where m(F) and g(F) are the quantum numbers of Zeeman sublevels and the Lande factor, respectively. This character contrasts finely with that, of a static magnetic, trap that can only trap or guide the states of m(FgF) > 0. In comparison to the optical field, the radio-frequency trap eliminates the spontaneous emission heating of the atoms. Unlike other oscillating traps reported in the e literature, the configuration of the radio-frequency trap is suitable for realization of a miniature magnetic guide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simple single-layer magnetic microtrap configuration which can trap an array of magnetically-trapped Bose-Einstein condensate. The configuration consists of two series of parallel wires perpendicular to each other and all of the crossing points are cut off for maintaining the uniformity of the current. We analyse the trapping potential, the position of trapping centres and the uniformity of the array of the traps. The trapping depth and trapping frequency with different parameters are also calculated. Lastly, the effect of the cut-off crossing points, dissipate power, chip production are introduced concisely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have observed strong scattering of a probe light by dilute Bose-Einstein condensate (BEC) Rb-87 gas in a tight magnetic trap. The scattering light forms fringes at the image plane. It is found that we can infer the real size of the condensation and the number of the atoms by modelling the imaging system. We present a quantitative calculation of light scattering by the condensed atoms. The calculation shows that the experimental results agree well with the prediction of the generalized diffraction theory, and thus we can directly observe the phase transition of BEC in a tight trap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of nonlinear light fields traveling inside a resonantly absorbing Bragg reflector is studied by use of Maxwell-Bloch equations. Numerical results show that a pulse initially resembling a light bullet may effectively experience negative refraction and anomalous dispersion in the resonantly absorbing Bragg reflector. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ghost imaging with classical incoherent light by third-order correlation is investigated. We discuss the similarities and the differences between ghost imaging by third-order correlation and by second-order correlation, and analyze the effect from each correlation part of the third-order correlation function on the imaging process. It is shown that the third-order correlated imaging includes richer correlated imaging effects than the second-order correlated one, while the imaging information originates mainly from the correlation of the intensity fluctuations between the test detector and each reference detector, as does ghost imaging by second-order correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have theoretically investigated the phase shift of a probe field for a four-level atomic system interacting successively with two fields tuned near an EIT resonance of an atom, a microwave field, and a coupling field. It has been found that the phase of retrieved signal has been shifted due to the cross-phase modulation when the stored spin wave was disturbed by a microwave. Because of the low relaxation rates of the ground hyperfine state, our proposed technique can impart a large phase rotation onto the probe field with low absorption of retrieved field and very low intensity of the microwave field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. There remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.