32 resultados para Level Set Approximation
Resumo:
The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.
Resumo:
A major problem which is envisaged in the course of man-made climate change is sea-level rise. The global aspect of the thermal expansion of the sea water likely is reasonably well simulated by present day climate models; the variation of sea level, due to variations of the regional atmospheric forcing and of the large-scale oceanic circulation, is not adequately simulated by a global climate model because of insufficient spatial resolution. A method to infer the coastal aspects of sea level change is to use a statistical ''downscaling'' strategy: a linear statistical model is built upon a multi-year data set of local sea level data and of large-scale oceanic and/or atmospheric data such as sea-surface temperature or sea-level air-pressure. We apply this idea to sea level along the Japanese coast. The sea level is related to regional and North Pacific sea-surface temperature and sea-level air pressure. Two relevant processes are identified. One process is the local wind set-up of water due to regional low-frequency wind anomalies; the other is a planetary scale atmosphere-ocean interaction which takes place in the eastern North Pacific.