66 resultados para Layout (Printing)
Resumo:
社区作为城市、村镇发展的主体和基本单元如何实现和谐、健康、美感,必然成为实现可持续发展的必然选择和重中之重。生态社区由于既能满足人们对环境优美的精神需求,又能充分体现节能、环保等生态要素,随即受到生态、环保学界、城市建设、规划及管理者的极大关注。本文系统地阐述了生态社区理论、实践的背景和发展历程,以此为指导构建了南芬区生态社区评价指标体系。包括4个子系统,共有13个目标层,可分为38个指标,分别从客观(实际建设情况)和主观(居民满意度)两个角度对南芬区的14个社区进行综合评价;并运用生态设计理论对业已在建的翠海华庭进行案例分析。结果表明:(1)实际建设情况:南芬各社区可持续状况一般,从空间上新城社区比旧城社区可持续性略好,从时间上看各历史阶段社区总体可持续性为1978-1992年间建成的社区>1993年以来社区>1978年前社区;(2)新城社区的居民满意度要高于旧城社区;(3)居民满意度均低于社区实际建设情况,这说明社区实际建设情况的提高,并不一定带来居民满意度的提高。(4)翠海华庭分析:设计人员严格按照生态设计的原则形成生态廊道、重视结合自然,注重文脉延续,但是水环境建设方面不够理想。最后,针对存在的问题,对生态社区评价和建设提出相关建议。
Resumo:
To investigate the roles of intercellular gap junctions and extracellular ATP diffusion in bone cell calcium signaling propagation in bone tissue, in vitro bone cell networks were constructed by using microcontact printing and self-assembled monolayer technologies. In the network, neighboring cells were interconnected through functional gap junctions. A single cell at the center of the network was mechanically stimulated by using an AFM nanoindenter. Intracellular calcium ([Ca2+](i)) responses of the bone cell network were recorded and analyzed. In the untreated groups, calcium propagation from the stimulated cell to neighboring cells was observed in 40% of the tests. No significant difference was observed in this percentage when the intercellular gap junctions were blocked. This number, however, decreased to 10% in the extracellular ATP-pathway-blocked group. When both the gap junction and ATP pathways were blocked, intercellular calcium waves were abolished. When the intracellular calcium store in ER was depleted, the indented cell can generate calcium transients, but no [Ca2+](i) signal can be propagated to the neighboring cells. No [Ca2+](i) response was detected in the cell network when the extracellular calcium source was removed. These findings identified the biochemical pathways involved in the calcium signaling propagation in bone cell networks. Published by Elsevier Ltd.
Resumo:
In the present study, the mechanism of intercellular calcium wave propagation in bone cell networks was identified. By using micro-contact printing and self-assembled monolayer technologies, two types of in vitro bone cell networks were constructed: open-ended linear chains and looped hexagonal networks with precisely controlled intercellular distances. Intracellular calcium responses of the cells were recorded and analysed when a single cell in the network was mechanically stimulated by nano-indentation. The looped cell network was shown to be more efficient than the linear pattern in transferring calcium signals from cell to cell. This phenomenon was further examined by pathway-inhibition studies. Intercellular calcium wave propagation was significantly impeded when extracellular adenosine triphosphate (ATP) in the medium was hydrolysed. Chemical uncoupling of gap junctions, however, did not significantly decrease the transferred distance of the calcium wave in the cell networks. Thus, it is extracellular ATP diffusion, rather than molecular transport through gap junctions, that dominantly mediates the transmission of mechanically elicited intercellular calcium waves in bone cells. The inhibition studies also demonstrated that the mechanical stimulation-induced calcium responses required extracellular calcium influx, whereas the ATP-elicited calcium wave relied on calcium release from the calcium store of the endoplasmic reticulum.
Resumo:
Based on several facts of CSRrn, such as the layout of the ring, the lattice parameters, exiting Schottky noise diagnosis equipment and fund, the primary stochastic cooling design of CSRm has been carried out. The optimum cooling time and the optimum cooling bandwidth axe obtained through simulation using the cooling function. The results indicate that the stochastic cooling is quite a powerful cooling method for CSRm. The comparison of the cooling effects of stochastic cooling and electron cooling in CSR are also presented. We can conclude that the combination of the two cooling methods on CSRrn will improve the beam cooling rate and quality beam greatly.
Resumo:
A new axial beam injection system is designed and being constructed at the HIRFL. It consists of 2 GLASSER lenses, 1 dipole, 5 quadrupoles and 3 solenoids. There are two beam line branches for 14.5GHz ECR ion source and 18.5GHz super conducting ECR ion source. Both transverse and longitudinal beam optics are improved in contrast with the old one. The layout, beam optics calculation results and further improved design are given.
Resumo:
传统固定管道式喷灌系统中的支管一般为最末一级管道,一般为单管顺长布置,支管上不再分支,喷头全部均匀分布在各条支管上,其缺陷是喷灌支管布设密度高,增加固定管道式喷灌系统的投资成本。为降低管道布设密度和投资成本,提出了一种新型支管布设方法,即在传统支管布设的基础上间隔去掉一半原有支管,保留原支管上的喷头位置不变,在保留支管上每间隔一个喷头增设一个垂直于支管的短管,向被去掉支管上的喷头供水。从支管布设密度和管材用量两个方面对新型和传统两种布设方法进行了对比分析。结果表明,新型布设方法降低了支管的布设密度,当喷头为正三角形布置时,支管布设密度降低率为7%。当喷头为等腰三角形布置,且喷头间距为支管间距的两倍时,支管布设密度降低率为25%。新型布设方法增加了支管管材用量,管材用量增加率始终大于141.4%,需要通过变管径的设计方法降低管材用量增加率。研究结果为固定管道式喷灌系统的支管布设提供了一种新的方法,为降低喷灌系统管道投资成本提供了一种新的思路。
Resumo:
山坡道路连接农田、果园 ,对山区经济发展有重要作用。黄土高原山坡道路存在严重的水土流失 ,侵蚀方式主要有沟蚀、泻溜、崩塌、陷穴、悬沟侵蚀与滑坡等。山坡道路网应按照小流域综合治理规划合理布置 ,其主要防护措施 :①修筑梯田 ,防止坡面径流冲刷道路 ;②将路面整修成拱形以分散径流 ;③在道路内侧修蓄水窑窖 ,拦蓄径流 ;④路面及边坡栽植草灌 ,防止雨水冲刷
Resumo:
针对当前网状信息可视化技术忽略了网状信息节点的可视信息的问题,提出一种面向网状信息的Radial+Focus可视化技术。首先介绍网状信息节点的信息详细度与先验重要度,并研究通过节点的交互历史计算节点的先验重要度的方法;然后研究了基于节点先验重要度的Radial+Focus布局算法;最后,给出了Radial+Focus可视化技术的应用实例和实验评估。实验评估表明,该技术能自然、高效地可视化网状信息,为用户对网状信息关系及网状信息节点的可视信息的分析提供有力的支持。
Resumo:
Both commercial and scientific applications often need to transform color images into gray-scale images, e. g., to reduce the publication cost in printing color images or to help color blind people see visual cues of color images. However, conventional color to gray algorithms are not ready for practical applications because they encounter the following problems: 1) Visual cues are not well defined so it is unclear how to preserve important cues in the transformed gray-scale images; 2) some algorithms have extremely high time cost for computation; and 3) some require human-computer interactions to have a reasonable transformation. To solve or at least reduce these problems, we propose a new algorithm based on a probabilistic graphical model with the assumption that the image is defined over a Markov random field. Thus, color to gray procedure can be regarded as a labeling process to preserve the newly well-defined visual cues of a color image in the transformed gray-scale image. Visual cues are measurements that can be extracted from a color image by a perceiver. They indicate the state of some properties of the image that the perceiver is interested in perceiving. Different people may perceive different cues from the same color image and three cues are defined in this paper, namely, color spatial consistency, image structure information, and color channel perception priority. We cast color to gray as a visual cue preservation procedure based on a probabilistic graphical model and optimize the model based on an integral minimization problem. We apply the new algorithm to both natural color images and artificial pictures, and demonstrate that the proposed approach outperforms representative conventional algorithms in terms of effectiveness and efficiency. In addition, it requires no human-computer interactions.
Resumo:
In this paper, low surface energy separators With undercut structures were fabricated through a full solution process, These low Surface energy separators are more suitable for application in inkjet printed passive-matrix displays of polymer light-emitting diodes. A patterned PS film was formed on the P4VP/photoresist film by microtransfer printing firstly. Patterned Au-coated Ni film was formed on the uncovered P4VP/photoresist film by electroless deposition. This metal film was used as mask to pattern the photoresist layer and form undercut structures with the patterned photoresist layer. The surface energy of the metal film also decreased dramatically from 84.6 mj/m(2) to 21.1 mJ/m(2) by modification of fluorinated mercaptan self-assemble monolayer on Au surface. The low surface energy separators were used to confine the flow of inkjet printed PFO solution and improve the patterning resolution of inkjet printing successfully. Separated PFO stripes, complement with the pattern of the separators, formed through inkjet printing.
Resumo:
A simple and efficient method for patterning polymeric semiconductors for applications in the field of organic electronics is proposed. The entire polymer layer, except for the desired pattern, is selectively lifted off from a flat poly(dimethylsiloxane) (PDMS) stamp surface by an epoxy mold with a relief pattern. This is advantageous because the elastic deformation of the PDMS stamp around protrusions of a patterned stamp under pressure can assist the plastic deformation of a polymer film along the pattern edges, yielding large area and high quality patterns, and the PDMS surface has low surface energy, which allows the easy removal of the polymer film.
Resumo:
Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.
Resumo:
A PEO-tethered layer on a PDMS (polydimethylsiloxane) cross-linked network has been prepared by a swelling-deswelling process. During swelling, the PDMS block of a PDMS-b-PEO diblock copolymer penetrates into the PDMS substrate and interacts with PDMS chains because of the van der Waals force and hydrophobic interaction between them. Upon deswelling, the PDMS block is trapped in the PDMS matrix while the PEO, as a hydrophilic block, is tethered to the surface. The PEO-tethered layer showed stability when treated in water for 16 h. The surface fraction of PEO and the wetting property of the PEO-tethered PDMS surface can be controlled by the cross linking density of the PDMS matrix. A patterned PEO-tethered layer on a PDMS network was also created by microcontact printing and water condensation figures (CFs) were used to study the patterned surface with different wetting properties.
Resumo:
The substrates with regular patterns of self-assembly monolayers (SAMs) produced by microcontact printing with octadecyltrichlorosilane (OTS) was employed to direct thin polystyrene dewetting to fabricate ordered micrometer scale pattern. The pattern sizes and pattern fashion can be manipulated by controlling the experimental parameters. The pattern formation mechanisms have been discussed. The dewetting pattern can be transferred to form PDMS stamp for future microfabrication process.
Resumo:
The pattern evolution processes of thin polystyrene (PS) film on chemically patterned substrates during dewetting have been investigated experimentally. The substrates have patterns of self-assembly monolayers produced by microcontact printing with octadecyltrichlorosilane. Optical microscopy and atomic force microscopy images reveal that ordered micrometer scale pattern can be created by surface direct dewetting. Various pattern sizes and pattern complexities can be achieved by controlling the experimental parameters. The dewetting pattern has been transferred to form PDMS stamp for soft lithography.