42 resultados para Kuroshio
Resumo:
Ocean color and sea surface temperature data from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite are used to study the cross-shelf circulation and transport of suspended sediments in the Yellow and the East China Seas. The ocean color images show a significant turbid water plume extending in the southeast direction from the Subei coasts of China to the shelf edge south of Cheju during fall-winter, suggesting significant cross-shelf currents in the Yellow Sea/East China Sea in winter. The currents transport suspended sediments from the area of the old Huanghe mouth into the Okinawa Trough. Part of the turbid plume joins the Yellow Sea Warm Current to enter the Yellow Sea trough in winter. The satellite images suggest that the time scales of cross-shelf transport and surface-to-subsurface descending of the suspended sediments are a few weeks. The turbid plume grows in fall, reaches its maximum expansion and intensity in winter-spring, and subsides in late spring. In summer, the plume becomes coastally trapped. Substantial interannual variations of the intensity and coverage of the turbid plume are indicated by the observations. In comparison, the Changjiang Diluted Water in summer only transports a small amount of the Changjiang suspended sediment to the outer shelf south of Cheju, which does not enter the Yellow Sea owing to the weak intrusion of the Yellow Sea Warm Current in summer. The dynamics of the cross-shelf circulation in the Yellow Sea in winter are hypothesized to be associated with (1) the convergence of the Yellow Sea Coastal Current and the Taiwan Warm Current off the Changjiang mouth and (2) the time-dependent forcing of the northerly wind bursts that drives the intrusion of the Yellow Sea Warm Current. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Eddies are frequently observed in the northeastern South China Sea (SCS). However, there have been few studies on vertical structure and temporal-spatial evolution of these eddies. We analyzed the seasonal Luzon Warm Eddy (LWE) based on Argo float data and the merged data products of satellite altimeters of Topex/Poseidon, Jason-1 and European Research Satellites. The analysis shows that the LWE extends vertically to more than 500 m water depth, with a higher temperature anomaly of 5A degrees C and lower salinity anomaly of 0.5 near the thermocline. The current speeds of the LWE are stronger in its uppermost 200 m, with a maximum speed of 0.6 m/s. Sometimes the LWE incorporates mixed waters from the Kuroshio Current and the SCS, and thus has higher thermohaline characteristics than local marine waters. Time series of eddy kinematic parameters show that the radii and shape of the LWE vary during propagation, and its eddy kinetic energy follows a normal distribution. In addition, we used the empirical orthogonal function (EOF) here to analyze seasonal characteristics of the LWE. The results suggest that the LWE generally forms in July, intensifies in August and September, separates from the coast of Luzon in October and propagates westward, and weakens in December and disappears in February. The LWE's westward migration is approximately along 19A degrees N latitude from northwest of Luzon to southeast of Hainan, with a mean speed of 6.6 cm/s.
Resumo:
Anti-cyclonic eddies northwest of Luzon of the Philippines in summer-fall are identified in the merged data products of satellite altimeters of Topex/Poseidon, Jason-1 and European Research Satellites. The generation and propagation of the anti-cyclonic eddies, which are confirmed by satellite ocean color data, are found to be a seasonal phenomenon that is phase-locked to the onset of the southwesterly monsoon and the relaxation of the cyclonic wind curl in the northeastern South China Sea. The eddies originate from northwest of Luzon in summer, move across the northeastern South China Sea to reach the China continental slope in fall, and propagate southwestward along the continental slope in fall-winter, inducing shelfbreak current variations in the western South China Sea in fall-winter. The anti-cyclonic eddy discovered by Li et al. (1998) in the northern South China Sea is found to originate from northwest of Luzon and carry primarily the South China Sea waters. It does not appear to be an eddy shed from the Kuroshio in the Luzon Strait area as alluded by Li et al. (1998) and others.
Resumo:
黑潮是太平洋区域的一支强劲的西边界流,在流经吕宋海峡时,流态发生显著变化。黑潮具有高温、高盐、高流速的特征,它的季节变化和年际变化对我国近海的环流结构和温盐分布起到了决定性的作用。 由于吕宋海峡现场观测资料的匮乏,关于源区黑潮的季节性变化和动力机制,众说纷纭。本文在前人研究的基础上,应用POM模型的POM2K版本,构建了一个以太平洋海盆为研究区域的三维斜压模型,模型采用正交曲线网格,在中国海区域进行加密并较好的拟合了岸线。 模式的结果较好的再现了东中国海和南海的主要流系及其季节性变化特征,如黑潮、台湾暖流、对马暖流等。东中国海的几处关键断面流量同实测资料具有较高的一致性,表明模式具有较高的可信度,之后讨论了南海海表面高度异常及其与卫星高度计的比较,结果再次验证了模式的可信度。 接着本文探讨了北赤道流分岔位置季节性的变化对源区黑潮流量的影响,结果表明,秋冬季节北赤道流分岔的位置较靠北,源区黑潮流量较大,而春夏季节北赤道流分岔位置较靠南,黑潮流量较小。 在此基础上,进行了几组数值实验,来研究源区黑潮的动力机制,结果显示,风应力的季节性变化是造成吕宋海峡净流量季节变化的主要驱动力,也是造成上层流场季节变化的主要因素;非线性作用对吕宋海峡的净流量的季节变化无多大贡献,但对上层流场的影响显著;黑潮在吕宋海峡处的强斜压性常年存在,吕宋海峡的净流量和上层流场对斜压梯度力的计算方案较敏感。
Resumo:
基于东海PN断面近五十年的历史水文数据,本文应用一种斜压流函数空间投影的方法分析冲绳海槽北部黑潮水团的水文结构及其季节性和年代际变异。通过将历史数据投影到一个斜压流函数空间中,GEM方法能很好地消除黑潮中尺度变异引起的噪音。诊断生成的东海黑潮温度和盐度GEM场以压力和斜压流函数为参数,能反映黑潮基本的温盐结构。通过分析1987年之后黑潮季节平均的温盐GEM场,结果显示黑潮中层水的盐度在夏季相对较低, 在春季达到最高。通过比较1987年之后温盐深仪(CTD)数据生成的GEM场与1987年之前南森瓶(Bottle)数据生成的GEM场,我们证实黑潮的年代际变化特征,即黑潮表层水近二十年来温度升高而盐度减小,同时发现黑潮中层水具有盐度减小而黑潮热带水具有盐度增加的趋势。进一步通过对PN断面上黑潮水团来源的分析讨论,得出中层水盐度最小值靠近黑潮左侧的现象是由于冲绳岛-宫古岛之间入侵的北太平洋中层水受黑潮主轴的平流作用所致。
Resumo:
本文使用1.5层约化重力准地转模式,研究了西边界流在西边界缺口处当处于迟滞过程(hysteresis)的临界状态时,其路径转变受中尺度涡旋影响的动力机制,探讨了中尺度涡旋影响西边界流在缺口处路径变化的几种形式。结果表明,气旋和反气旋中尺度涡旋都可能使西边界流产生由入侵状态到跨隙流态的转变,而只有反气旋中尺度涡旋才有可能诱发西边界流由跨隙流态向入侵流态的转变。论文进一步讨论了中尺度涡旋影响西边界流在缺口处路径变化,受涡旋强度,半径和位置的影响。 研究还显示当西边界流远离其迟滞过程临界状态时,其路径不容易受中尺度涡旋的影响而发生长期变化,此时西边界流会阻挡中尺度涡旋在缺口处的向西传播,并迫使涡旋在吕宋海峡东侧向北移动。以上结果用来解释了吕宋海峡黑潮变异的某些结构特征。
Resumo:
菲律宾群岛以东的西太平洋赤道和热带海域以存在活跃和复杂的近表面环流而著称。北赤道流(North equatorial current)由东向西不断强化,当到达菲律宾群岛沿岸时,由于受菲律宾群岛的阻挡和β效应,海水在西边界堆积,在西边界形成两支强的西边界流,一支向北形成黑潮(Kuroshio current),一支向南形成棉兰老流(Mindanao current)。这两支西边界流对太平洋的热量重新分配将起着重要的作用。南下的棉兰老流到达棉兰老岛东南海域时,一部分成为印度尼西亚贯穿流(Indonesian throughflow),大部分转向东和苏拉威西海出来的海水及南赤道流(South equatorial current)越过赤道流进入这海域的海水混合,成为北赤道逆流(North equatorial countercurrent)。从1990年10月获得的水文资料算出本航次东边这条断面的纬向地转流断面图,可以看出,1990年晚秋北赤道汉分布在8°N以北的海域,强度最大的流集中在8~9°N之间相对狭窄的地带。而在76号站(3.41°N,128.76°N)到45号站(7.50°N,129.99°N)这条断面上,北赤道逆流分布在3°N~8°N之间,而强度最大流集中在靠近印度尼西亚的摩尔泰岛的南段,另从本航次获得的棉兰老岛以东海域-100米处动力米高度可以看出,在此海域存在两个气旋型涡旋(Cyclonic eddy)一个中心约在10.2°N,128°N,另一个中心在129°N以东,6.5°N左右的地方。用带~(63)Ni电子捕获检测器(ECD)的气相色谱对西太平洋的一些站在0米、50米、100米、150米、200米、300米等六层海水(有些站8~10层)中的氟里昴浓度进行了测定,发现在大部分站位位于300米以上的海水中氟里昴12浓度皆高于1.0 pmol·l~(-1)。表明表层温度混合层和温跃层之间的氟里昴-12交换的比较强烈,特别是靠近棉兰老岛的地方。用水下100米、200米氟里昴-12浓度等值线地域分布和变化,追踪北赤道流,棉兰老流,北赤道流之间的联系,结果与同一海域的动力米高度的地域分布十分吻合。再通过比较本航次东边这条断面的氟里昴-12浓度断面图和地转流断面图,我们能清楚地看的到,西向流区对应着高浓度的氟里昴-12分布,特别是在8~9°N流轴上面存在着氟里昴-12浓度最大值轴,而东向流区对应着相对低浓度的氟里昴-12分布,由以上结果,我们可以得出结论:用氟里昴示踪棉兰老岛以东海域的近表面环流是十分有效的,这样,氟里昴浓度在这海域的分布对今后建立本海域的大洋环流数学模式将能起重要作用。本文根据氟里昴主要来源是北半球的工业区,提出了一个氟里昴输入棉兰老岛以东海域的机制。
Resumo:
近年来,东中国海赤潮灾情严重,且74.7%的赤潮集中在 30°30′~32°00′N、122°15′~123°10′E的“赤潮高发区”。在研究该区赤潮成因时,长江口沿岸上升流的影响越来越受到人们的关注,并被一些专家观测和研究。但目前为止,针对该区营养盐动力学特征及其对叶绿素a影响的研究较少,且不系统。 本文根据2004年四个季度月的调查资料,系统地探讨了长江口上升流区营养盐动力学特征;估算了上升流的营养盐通量,并和陆源输入通量进行了比较。初步探讨了上升流对该区营养盐结构和浮游植物生长的影响。为深入研究长江口富营养化和赤潮形成机制提供了参考。 结果表明春季在122°20′~123°00′E,31°00′~32°00′N以北海域存在低温、高盐、低溶解氧的沿岸上升流。它不但可把底层高含量磷酸盐输送到10m层以上海区,而且还为上层海区输入了相对低含量硝酸盐和硅酸盐,从而改善了上层营养盐结构,使得营养盐比值接近Redfield Ratios,同时还改善了上层的透明度;从而有利于浮游植物的繁殖。夏季上升流受到强大的长江冲淡水压制,表现不如春季明显,主体水团出现在122°20′~123°00′E,31°15′~31°50′N海区10m层以下。 在秋、冬季,上升流现象被更强的对流现象所掩盖,表现为台湾暖流表层水的入侵。表、底层水域不仅温、盐度分布十分接近,而且营养盐结构差异也较小。冬季台湾暖流水中的磷酸盐含量远比秋季高,与春、夏季上升流水团中磷酸盐含量接近。硝酸盐和硅酸盐含量比秋季稍高,比春、夏季上升流水团中的含量稍低。 叶绿素a季节性分布表明,在春、夏季的10m层以下水域,叶绿素a受到透明度限制,含量相差不大;而在表层和10m层之间,春季叶绿素a的含量远高于夏季,说明春季的营养盐结构和自然条件更有利于浮游植物的繁荣生长。在秋季台湾暖流水影响的区域,表层叶绿素a含量较夏季稍低。而冬季该区叶绿素a含量则是最低的。 对长江口上升流水团春季营养盐通量的计算结果表明,上升流水团中磷酸盐输送通量远远高于长江径流输入,是其径流通量的两倍以上,可能会成为影响该海区磷酸盐分布以及浮游植物生长的一个值得关注的因素。 关键词:上升流,营养盐动力学,营养盐结构,叶绿素a,长江冲淡水
Resumo:
黑潮是西北太平洋一支高温、高盐、高流速的西边界流,它起源于菲律宾以东海域,沿吕宋岛、台湾东岸、东海大陆架外缘流动,并穿越吐噶喇海峡返回太平洋。其中吕宋岛至台湾岛这段西边界流命名为源区黑潮。源区黑潮在流经吕宋海峡以东时,由于失去岸界支撑会发生形变,并通过吕宋海峡与南海环流体系进行质量、动量和能量的交换,并影响着南海的环流特征。因此研究黑潮通过吕宋海峡入侵南海的关键动力过程和机制,对我们国家的军事、生产、环境等具有十分重大的意义,一直是国内外海洋学家关注的焦点。 本文利用高度计资料和涡旋精度的高分辨率数值模式(OFES)输出结果分析了南海东北部和吕宋海峡东侧海域的上层环流特征,并独立建立1.5层浅水约化重力模式下的理想模型,分析了黑潮从吕宋海峡入侵南海的非线性特征和西传的大洋中尺度涡旋与黑潮在吕宋海峡处的相互作用。 对高度计资料和模式结果资料分析的结果表明季风是影响南海北部上层环流的主要因素,黑潮以各种方式入侵南海也是影响南海北部环流特征的重要组成部分。通过数值模拟,我们得到在不同的参数下,黑潮入侵南海会存在稳定态、分叉、周期解等非线性特征,对应着黑潮南海流套、分离流环、无入侵等多种流态。通过讨论大洋中尺度涡旋与黑潮在吕宋海峡处的相互作用,发现涡旋在西传遇到黑潮后基本局地耗散或随黑潮继续向北移动,但当黑潮较弱时,涡旋可能将大洋中的能量通过吕宋海峡传入南海。
Resumo:
2005年6月,中法国际合作在西太平洋海域执行IMAGES XII-MD147 Micro Polo1航次科学考察时,由法国极地研究所R/V Marine Dufresne极地考察船利用Calypso重力取样器于冲绳海槽南部钻取了34.2米长MD05-2908柱状样。本文利用AMS14C测年数据建立了该孔的年代模型,对该孔的浮游有孔虫动物群落进行了分析,并利用FP-12E浮游有孔虫转换函数和Q型因子分析方法对该孔浮游有孔虫数据进行了研究,对全新世以来的黑潮流系演化和古环境记录进行了讨论。 结果表明,中晚全新世存在着5次洪水爆发期,洪水爆发期与当时温暖气候相对应,而高海平面对洪水的爆发也产生了影响。进入全新世以来的6790~4000a B.P.期间,黑潮流一直有稳步增强的趋势,黑潮流始终位于冲绳海槽内;4000~3000a B.P.期间,黑潮强度减弱或者发生明显东偏,冲淡水影响增强;3000a B.P.以后黑潮强度逐渐增强,1650~0a B.P.为中晚全新世以来黑潮活动最强的时期,在600a B.P.和140a B.P.左右存在低值,黑潮强度短暂减弱。普林虫低值事件在MD05-2908孔中有很好的体现,对该事件进行了进一步定年,其发生时间为3900~2800a B.P.,持续时间为1100a,该事件的发生可能与东亚冬季风加强有关。 冲绳海槽中晚全新世气候变化可以分为四个阶段: 6790~4800a B.P.低温阶段,4800~4100a B.P.高温阶段,4100~2400a B.P.低温阶段,2400~0a B.P.波动高温阶段。通过与中国及世界其它地方对比可以识别出6.3~5.9、5.5、4.6~4.2、3.6~3.0、2.9~2.4、1.3~1.0、0.5~0.1ka B.P.六个降温事件,为全新世气候波动在深海高分辨率沉积记录中的响应提供了有力支持。该孔SST频谱分析结果显示,存在着3008a、1061a这种千年尺度的周期,以及215a、123a、103~107a、81~78a以及73~71a等周期,表明该孔SST变化与太阳活动强度是密切相关的。 中晚全新世以来,黑潮流在冲绳海槽逐步加强,到4000aB.P.左右达到最大,然后4000~3000a B.P.期间,黑潮强度明显减弱或者发生东偏,3000aB.P.以后,黑潮强度持续增强,在近1000aB.P.波动较大。 对冲绳海槽地区14个柱状样氧同位素以及P.obliquiloculata丰度进行研究,发现LGM以来,黑潮流可能仍然在冲绳海槽地区活动,并没有移出海槽外,但是由于其强度减弱,其流径发生了很大变化。
Resumo:
温度跃层是反映海洋温度场的重要物理特性指标,对水下通讯、潜艇活动及渔业养殖、捕捞等有重要影响。本文利用中国科学院海洋研究所“中国海洋科学数据库”在中国近海及西北太平洋(110ºE-140ºE,10ºN-40ºN)的多年历史资料(1930-2002年,510143站次),基于一种改进的温跃层判定方法,分析了该海域温跃层特征量的时空分布状况。同时利用Princeton Ocean Model(POM),对中国近海,特别是东南沿海的水文结构进行了模拟,研究了海洋水文环境对逆温跃层的影响。最后根据历史海温观测资料,利用EOF分解统计技术,提出了一种适于我国近海及毗邻海域,基于现场有限层实测海温数据,快速重构海洋水温垂直结构的统计预报方法,以达到对现场温跃层的快速估计。 历史资料分析结果表明,受太阳辐射和风应力的影响,20°N以北研究海域,温跃层季节变化明显,夏季温跃层最浅、最强,冬季相反,温跃层厚度的相位明显滞后于其他变量,其在春季最薄、秋季最厚。12月份到翌年3月份,渤、黄及东海西岸,呈无跃层结构,西北太平洋部分海域从1月到3月份,也基本无跃层结构。在黄海西和东岸以及台湾海峡附近的浅滩海域,由于风力搅拌和潮混合作用,温跃层出现概率常年较低。夏季,海水层化现象在近海陆架海域得到了加强,陆架海域温跃层强度季节性变化幅度(0.31°C/m)明显大于深水区(约0.05°C/m),而前者温跃层深度和厚度的季节性变化幅度小于后者。20°N以南研究海域,温跃层季节变化不明显。逆温跃层主要出现在冬、春季节(10月-翌年5月)。受长江冲淡水和台湾暖流的影响,东南沿海区域逆温跃层持续时间最长,出现概率最大,而在山东半岛北及东沿岸、朝鲜半岛西及北岸,逆温跃层消长过程似乎和黄海暖流有关。多温跃层结构常年出现于北赤道流及对马暖流区。在黑潮入侵黄、东、南海的区域,多温跃层呈现明显不同的季节变化。在黄海中部,春季多温跃层发生概率高于夏季和秋季,在东海西部,多跃层主要出现在夏季,在南海北部,冬季和春季多温跃层发生概率大于夏季和秋季。这些变化可能主要受海表面温度变化和风力驱动的表层流的影响。 利用Princeton Ocean Model(POM),对中国东南沿海逆温跃层结构进行了模拟,模拟结果显示,长江冲淡水的季节性变化以及夏季转向与实际结果符合较好,基本再现了渤、黄、东海海域主要的环流、温盐场以及逆温跃层的分布特征和季节变化。通过数值实验发现,若无长江、黄河淡水输入,则在整个研究海域基本无逆温跃层出现,因此陆源淡水可能是河口附近逆温跃层出现的基本因素之一。长江以及暖流(黑潮和台湾暖流)流量的增加,均可在不同程度上使逆温跃层出现概率及强度、深度和厚度增加,且暖流的影响更加明显。长江对东南沿海逆温跃层的出现,特别是秋季到冬季初期,有明显的影响,使长江口海域逆温跃层位置偏向东南。暖流对于中国东南沿海的逆温跃层结构,特别是初春时期,有较大影响,使长江口海域的逆温跃层位置向东北偏移。 通过对温跃层长期变化分析得出,黄海冷水团区域,夏季温跃层强度存在3.8年左右的年际变化及18.9年左右的年代际变化,此变化可能主要表现为对当年夏季和前冬东亚地区大气气温的热力响应。东海冷涡区域,夏季温跃层强度存在3.7年的年际变化,在El Nino年为正的强度异常,其可能主要受局地气旋式大气环流变异所影响。谱分析同时表明,该海域夏季温跃层强度还存在33.2年的年代际变化,上世纪70年代中期,温跃层强度由弱转强,而此变化可能与黑潮流量的年代际变化有关。 海洋水温垂直结构的统计预报结果显示,EOF分解的前四个主分量即能够解释原空间点温度距平总方差的95%以上,以海洋表层附近观测资料求解的特征系数推断温度垂直结构分布的结果最稳定。利用东海陆架区、南海深水区和台湾周边海域三个不同区域的实测CTD样本廓线资料,对重构模型的检验结果表明,重构与实测廓线的相关程度超过95%的置信水平。三个区重构与实测温度廓线值的平均误差分别为0.69℃,0.52℃,1.18℃,平均重构廓线误差小于平均气候偏差,统计模式可以很好的估算温度廓线垂直结构。东海陆架海区温度垂直重构廓线与CTD观测廓线获得的温跃层结果对比表明,重构温跃层上界、下界深度和强度的平均绝对误差分别为1.51m、1.36m和0.17℃/m,它们的平均相对误差分别为24.7%、8.9%和22.6%,虽然温跃层深度和强度的平均相对误差较大,但其绝对误差量值较小。而在南海海区,模型重构温跃层上界、下界和强度的平均绝对预报误差分别为4.1m、27.7m和0.007℃/m,它们的平均相对误差分别为16.1%、16.8%和9.5%,重构温跃层各特征值的平均相对误差都在20%以内。虽然南海区温跃层下界深度平均绝对预报误差较大,但相对于温跃层下界深度的空间尺度变化而言(平均温跃层下界深度为168m),平均相对误差仅为16.8%。因此说模型重构的温度廓线可以达到对我国陆架海域、深水区温跃层的较好估算。 基于对历史水文温度廓线观测资料的分析及自主温跃层统计预报模型,研制了实时可利用微机简单、快捷地进行温跃层估算及查询的可视化系统,这是迄今进行大范围海域温跃层统计与实时预报研究的较系统成果。
Resumo:
Copepod species diversity, abundance and assemblages in relation to water masses over the continental shelf of the Yellow Sea (YS) and East China Sea (ECS) were studied extensively based on the net plankton samples in autumn 2000. Multivariate analysis based on copepod assemblage resulted in recognition of five groups (Groups 1-5) corresponding to the water masses. Groups 1 and 2 delineated from inshore stations with low salinity YS Surface Water, and offshore stations with YS Cold Water in the YS. Group 3 located in the joint area of YS and ECS mainly with Mixed Water. Groups 4 and 5 in the ECS delineated two assemblages mainly from inshore and shallow stations with ECS Mixed Water in the southeastern ECS, and offshore stations along the ECS shelf edge controlled by saline Kuroshio Water. Salinity and temperature were more important in characterizing copepod assemblage of the continental shelf than chlorophyll a. (c) 2005 Elsevier B.V. All rights reserved.