37 resultados para Kozeny-Carman Generalized
Resumo:
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f ( R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds.
Resumo:
We give a generalized Lagrangian density of 1 + 1 Dimensional O( 3) nonlinear sigma model with subsidiary constraints, different Lagrange multiplier fields and topological term, find a lost intrinsic constraint condition, convert the subsidiary constraints into inner constraints in the nonlinear sigma model, give the example of not introducing the lost constraint. N = 0, by comparing the example with the case of introducing the lost constraint, we obtain that when not introducing the lost constraint, one has to obtain a lot of various non-intrinsic constraints. We further deduce the gauge generator, give general BRST transformation of the model under the general conditions. It is discovered that there exists a gauge parameter beta originating from the freedom degree of BRST transformation in a general O( 3) nonlinear sigma model, and we gain the general commutation relations of ghost field.
Resumo:
The alpha decay half-lives of the recently produced isotopes of the 112, 114, 116 and 118 nuclei and decay products have been calculated in the quasi-molecular shape path using the experimental Q(alpha) value and a Generalized Liquid Drop Model including the proximity effects between nucleons in the neck or the gap between the nascent fragments. Reasonable estimates are obtained for the observed alpha decay half-lives. The results are compared with calculations using the Density-Dependent M3Y effective interaction and the Viola-Seaborg-Sobiczewski formulae. Generalized Liquid Drop Model predictions are provided for the alpha decay half-lives of other superheavy nuclei using the Finite Range Droplet Model Q(alpha) and compared with the values derived from the VSS formulae.
Resumo:
The properties of the nuclei belonging to the newly observed nuclei starting from (288)115 have been studied with the generalized liquid drop model connected with WKB approximation. The calculated results have been compared with the results of the DDM3Y theory and the experimental data. The half lives of this new alpha decay chain have been well tested from the consistence of the macroscopic, microscopic and the experimental data.
Resumo:
We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.
Resumo:
In this article, generalized torsion angles of derivatives of 1-[(2-hydroxyethoxy)methy1]-6(phenylthio)thymine(HEPT) were calculated, which include abundant three dimensional information of molecules. Molecular similarity matrix was built based on the calculated generalized torsion angles. These similarities were taken as the new variables, and the new variables were selected by using Leaps-and-Bounds regression analysis. Multiple regression analysis and neural networks were performed, and the satisfactory results were achieved by using the neural networks.