42 resultados para Keyed One-Way Functions
Resumo:
In exploration geophysics,velocity analysis and migration methods except reverse time migration are based on ray theory or one-way wave-equation. So multiples are regarded as noise and required to be attenuated. It is very important to attenuate multiples for structure imaging, amplitude preserving migration. So it is an interesting research in theory and application about how to predict and attenuate internal multiples effectively. There are two methods based on wave-equation to predict internal multiples for pre-stack data. One is common focus point method. Another is inverse scattering series method. After comparison of the two methods, we found that there are four problems in common focus point method: 1. dependence of velocity model; 2. only internal multiples related to a layer can be predicted every time; 3. computing procedure is complex; 4. it is difficult to apply it in complex media. In order to overcome these problems, we adopt inverse scattering series method. However, inverse scattering series method also has some problems: 1. computing cost is high; 2. it is difficult to predict internal multiples in the far offset; 3. it is not able to predict internal multiples in complex media. Among those problems, high computing cost is the biggest barrier in field seismic processing. So I present 1D and 1.5D improved algorithms for reducing computing time. In addition, I proposed a new algorithm to solve the problem which exists in subtraction, especially for surface related to multiples. The creative results of my research are following: 1. derived an improved inverse scattering series prediction algorithm for 1D. The algorithm has very high computing efficiency. It is faster than old algorithm about twelve times in theory and faster about eighty times for lower spatial complexity in practice; 2. derived an improved inverse scattering series prediction algorithm for 1.5D. The new algorithm changes the computing domain from pseudo-depth wavenumber domain to TX domain for predicting multiples. The improved algorithm demonstrated that the approach has some merits such as higher computing efficiency, feasibility to many kinds of geometries, lower predictive noise and independence to wavelet; 3. proposed a new subtraction algorithm. The new subtraction algorithm is not used to overcome nonorthogonality, but utilize the nonorthogonality's distribution in TX domain to estimate the true wavelet with filtering method. The method has excellent effectiveness in model testing. Improved 1D and 1.5D inverse scattering series algorithms can predict internal multiples. After filtering and subtracting among seismic traces in a window time, internal multiples can be attenuated in some degree. The proposed 1D and 1.5D algorithms have demonstrated that they are effective to the numerical and field data. In addition, the new subtraction algorithm is effective to the complex theoretic models.
Resumo:
This dissertation starts from the point that the prestack time migration can been considered as an approximation of the prestack depth migration, giving a wave equation based prestack time migration approach. The new approach includes: analytically getting the travel time and amplitude based on the one way wave equation and the stationary-phase theory, using ‘spread’ imaging method and imaging following the prestack depth migration, updating the velocity model with respect to the flats of the events in CRP gathers. Based on this approach, we present a scheme that can image land seismic data without field static correction. We may determine the correct near surface velocities and stack velocities by picking up the residual correction of the events in the CRP gathers. We may get the rational migration section based on the updated velocities and correct the migration section from a floating datum plane to a universal datum plane. We may adaptively determine the migration aperture according to the dips of the imaging structures. This not only speed up the processing, but may suppress the migration noise produce by the extra aperture. We adopt the deconvolution imaging condition of wave equation migration. It may partially compensate the geometric divergence. In this scheme, we use the table-driven technique which may enhance the computational efficiency. If the subsurface is much more complicated, it may be impossible to distinguish the DTS curve. To solve this problem, we proposed a technique to determine the appropriate range of the DTS curve. We synthesize DTS panel in this range using different velocities and depths, and stack the amplitude around the zero time. Determine the correct velocity and location of the considered grid point by comparing the values.
Resumo:
In the petroleum exploration industry, it is very important to simulate the evolvement of wave field beneath our earth in the aspects of time and space quickly and effectively. Because of the huge data size in petroleum exploration and also the strict requirement of time limit in the actual process of production, simplification of models and approximation of algorithm are necessary. At the same time, every fine improvement to algorithm has its great practical significance and use value. Based on the reasons above, this dissertation researches the separable approximation methods of space-wave number domain for One-way Wave Operator and gets the conclusions as follow: 1. It is insufficient to value One-way Wave Operator purely from the mathematical modulus and phase error, while, holding some specific structural character of operator should be more important. Because, the evaluation criterion of One-way Wave Operator’s imaging ability is quite complicate and obscured, which is similar to the evaluation of an artwork. 2. We can not search for a best or most effective One-way Wave Operator approximation solution for all. However, to different speed model and precision requirement the best approximation solution does exist which is maybe also a compromise, because it is very beneficial to One-way Wave Operator to take full advantage of speed model’s pre-tested information.
Resumo:
The function of seismic data in prospecting and exploring oil and gas has exceeded ascertaining structural configuration early. In order to determine the advantageous target area more exactly, we need exactly image the subsurface media. So prestack migration imaging especially prestack depth migration has been used increasingly widely. Currently, seismic migration imaging methods are mainly based on primary energy and most of migration methods use one-way wave equation. Multiple will mask primary and sometimes will be regarded as primary and interferes with the imaging of primary, so multiple elimination is still a very important research subject. At present there are three different wavefield prediction and subtraction methods: wavefield extrapolation; feedback loop; and inverse-scattering series. I mainly do research on feedback loop method in this paper. Feedback loop method includs prediction and subtraction.Currently this method has some problems as follows. Firstly, feedback loop method requires the seismic data used to predict multiple is full wavefield data, but usually the original seismic data don’t meet this assumption, so seismic data must be regularized. Secondly, Multiple predicted through feedback loop method usually can’t match the real multiple in seismic data and they are different in amplitude, phase and arrrival time. So we need match the predicted multiple and that in seismic data through estimating filtering factors and subtract multiple from seismic data. It is the key for multiple elimination how to select a correct matching filtering method. There are many matching filtering methods and I put emphasis on Least-square adaptive matching filtering and L1-norm minimizing adaptive matching filtering methods. Least-square adaptive matching filtering method is computationally very fast, but it has two assumptions: the signal has minimum energy and is orthogonal to the noise. When seismic data don’t meet the two assumptions, this method can’t get good matching results and then can’t attenuate multiple correctly. L1-norm adaptive matching filtering methods can avoid these two assumptions and then get good matching results, but this method is computationally a little slow. The results of my research are as follows: 1. Proposed a method that interpolates seismic traces based on F-K migration and demigration. The main advantage of this method is that it can interpolate seismic traces in any offsets. It shows this method is valid through a simple model. 2. Comparing different Least-square adaptive matching filtering methods. The results show that equipose multi-channel adaptive matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and two field data. 3. Proposed equipose multi-channel L1-norm adaptive matching filtering method. Because L1-norm is robust to large amplitude differences, there are no assumption on the signal has minimum energy and orthogonality, this method can get better results of multiple elimination. 4. Research on multiple elimination in inverse data space. The method is a new multiple elimination method and it is different from those methods mentioned above.The advantages of this method is that it is simple in theory and no need for the adaptive subtraction and computationally very fast. The disadvantage of this method is that it is not stabilized in its solution. The results show that equipose multi-channel and equipose pesudo-multi-channel least-square matching filtering and equipose multi-channel and equipose pesudo-multi-channel L1-norm matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and many field data.
Resumo:
Seismic exploration is the main method of seeking oil and gas. With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in seismic exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which has obtained good effect. However, in complex media with wider angles, the effect of FFD method is not satisfactory. Based on the FFD operator, we extend the two coefficients to be optimized to four coefficients, then optimize them globally using simulated annealing algorithm. Our optimization method select the solution of one-way wave equation as the objective function. Except the velocity contrast, we consider the effects of both frequency and depth interval. The proposed method can improve the angle of FFD method without additional computation time, which can reach 75° in complex media with large lateral velocity contrasts and wider propagation angles. In this thesis, combinating the FFD method and alternative-direction-implicit plus interpolation(ADIPI) method, we obtain 3D FFD with higher accuracy. On the premise of keeping the efficiency of the FFD method, this method not only removes the azimuthal anisotropy but also optimizes the FFD mehod, which is helpful to 3D seismic exploration. We use the multi-parameter global optimization method to optimize the high order term of FFD method. Using lower-order equation to obtain the approximation effect of higher-order equation, not only decreases the computational cost result from higher-order term, but also obviously improves the accuracy of FFD method. We compare the FFD, SAFFD(multi-parameter simulated annealing globally optimized FFD), PFFD, phase-shift method(PS), globally optimized FFD (GOFFD), and higher-order term optimized FFD method. The theoretical analyses and the impulse responses demonstrate that higher-order term optimized FFD method significantly extends the accurate propagation angle of the FFD method, which is useful to complex media with wider propagation angles.
Resumo:
On 70~(th) SEG Annual meeting, many author have announced their result on the wave equation prestack depth migration. The methods of the wave-field imaging base on wave equation becomes mature and the main direction of seismic imaging. The direction of imaging the complex media has been the main one of the projects that the national "85" and "95" reservoir geophysics key projects and "Knowledge innovation key project of Chinese Academy of Science" have been supported. Furthermore, we began the study for special oil field situation of our nation with the international research groups. Under the background, the author combined the thoughts of symplectic with wave equation pre-stack depth migration, and develops and efficient wave equation pre-stack depth migration method. The purpose of this work is to find out a way to imaging the complex geological goals of Chinese oilfields and form a procedure of seismic data processing. The paper gives the approximation of one way wave equation operator, and shows the numerical results. The comparisons have been made between split-step phase method, Kirchhoff and Ray+FD methods on the pulse response, simple model and Marmousi model. The results shows that the method in this paper has an higher accuracy. Four field data examples have also be given in this paper. The results of field data demonstrate that the method can be usable. The velocity estimation is an important part of the wave equation pre-stack depth migration. A parallel velocity estimation program has been written and tested on the Beowulf clusters. The program can establish a velocity profile automatically. An example on Marmousi model has shown in the third part of the paper to demonstrate the method. Another field data was also given in the paper. Beowulf cluster is the converge of the high performance computer architecture. Today, Beowulf Cluster is a good choice for institutes and small companies to finish their task. The paper gives some comparison results the computation of the wave equation pre-stack migration on Beowulf cluster, IBM-SP2 (24 nodes) in Daqing and Shuguang 3000, and the comparison of their prize. The results show that the Beowulf cluster is an efficient way to finish the large amount computation of the wave equation pre-stack depth migration, especially for 3D.
Resumo:
On 70~(th) SEG Annual meeting, many author have announced their result on the wave equation pre-stack depth migration. The methods of the wave-field imaging base on wave equation becomes mature and the main direction of seismic imaging. The direction of imaging the complex media has been the main one of the projects that the national "85" and "95" reservoir geophysics key projects and "Knowledge innovation key project of Chinese Academy of Science" have been supported. Furthermore, we began the study for special oil field situation of our nation with the international research groups. Under the background, the author combined the thoughts of symplectic with wave equation pre-stack depth migration, and develops and efficient wave equation pre-stack depth migration method. The purpose of this work is to find out a way to imaging the complex geological goals of Chinese oilfields and form a procedure of seismic data processing. The paper gives the approximation of one way wave equation operator, and shows the numerical results. The comparisons have been made between split-step phase method, Kirchhoff and Ray+FD methods on the pulse response, simple model and Marmousi model. The result shows that the method in this paper has an higher accuracy. Four field data examples have also be given in this paper. The results of field data demonstrate that the method can be usable. The velocity estimation is an important part of the wave equation pre-stack depth migration. A. parallel velocity estimation program has been written and tested on the Beowulf clusters. The program can establish a velocity profile automatically. An example on Marmousi model has shown in the third part of the paper to demonstrate the method. Another field data was also given in the paper. Beowulf cluster is the converge of the high performance computer architecture. Today, Beowulf Cluster is a good choice for institutes and small companies to finish their task. The paper gives some comparison results the computation of the wave equation pre-stack migration on Beowulf cluster, IBM-SP2 (24 nodes) in Daqing and Shuguang3000, and the comparison of their prize. The results show that the Beowulf cluster is an efficient way to finish the large amount computation of the wave equation pre-stack depth migration, especially for 3D.
Resumo:
Oil and scientific groups have been focusing on the 3D wave equation prestack depth migration since it can solve the complex problems of the geologic structure accurately and maintain the wave information, which is propitious to lithology imaging. The symplectic method was brought up by Feng Kang firstly in 1984 and became the hotspot of numerical computation study. It will be widely applied in many scientific field of necessity because of its great virtue in scientific sense. This paper combines the Symplectic method and the 3-D wave equation prestack depth migration to bring up an effectual numerical computation method of wave field extrapolatation technique under the scientific background mentioned above. At the base of deep analysis of computation method and the performance of PC cluster, a seismic prestack depth migration flow considering the virtue of both seismic migration method and Pc cluster has formatted. The software, named 3D Wave Equation Prestack Depth Migration of Symplectic Method, which is based on the flow, has been enrolled in the National Bureau of Copyright (No. 0013767). Dagang and Daqing Oil Field have now put it into use in the field data processing. In this paper, the one way wave equation operator is decompounded into a phase shift operator and a time shift operator and the correct item with high rank Symplectic method when approaching E exponent. After reviewing eliminating alias frequency of operator, computing the maximum angle of migration and the imaging condition, we present the test result of impulse response of the Symplectic method. Taking the imaging results of the SEG/EAGE salt and overthrust models for example and seeing about the imaging ability with complex geologic structure of our software system, the paper has discussed the effect of the selection of imaging parameters and the effectuation on the migration result of the seismic wavelet and compared the 2-D and 3-D prestack depth migration result of the salt mode. We also present the test result of impulse response with the overthrust model. The imaging result of the two international models indicates that the Symplectic method of 3-D prestack depth migration accommodates great transversal velocity variation and complex geologic structure. The huge computing cost is the key obstruction that 3-D prestack depth migration wave equation cannot be adopted by oil industry. After deep analysis of prestack depth migration flow and the character of PC cluster ,the paper put forward :i)parallel algorithms in shot and frequency domain of the common shot gather 3-D wave equation prestack migration; ii)the optimized setting scheme of breakpoint in field data processing; iii)dynamic and static load balance among the nodes of the PC cluster in the 3-D prestack depth migration. It has been proven that computation periods of the 3-D prestack depth migration imaging are greatly shortened given that adopting the computing method mentioned in the paper. In addition,considering the 3-D wave equation prestack depth migration flow in complex medium and examples of the field data processing, the paper put the emphasis on: i)seismic data relative preprocessing, ii) 2.5D prestack depth migration velocity analysis, iii)3D prestack depth migration. The result of field data processing shows satisfied application ability of the flow put forward in the paper.
Resumo:
Seismic wave field numerical modeling and seismic migration imaging based on wave equation have become useful and absolutely necessarily tools for imaging of complex geological objects. An important task for numerical modeling is to deal with the matrix exponential approximation in wave field extrapolation. For small value size matrix exponential, we can approximate the square root operator in exponential using different splitting algorithms. Splitting algorithms are usually used on the order or the dimension of one-way wave equation to reduce the complexity of the question. In this paper, we achieve approximate equation of 2-D Helmholtz operator inversion using multi-way splitting operation. Analysis on Gauss integral and coefficient of optimized partial fraction show that dispersion may accumulate by splitting algorithms for steep dipping imaging. High-order symplectic Pade approximation may deal with this problem, However, approximation of square root operator in exponential using splitting algorithm cannot solve dispersion problem during one-way wave field migration imaging. We try to implement exact approximation through eigenfunction expansion in matrix. Fast Fourier Transformation (FFT) method is selected because of its lowest computation. An 8-order Laplace matrix splitting is performed to achieve a assemblage of small matrixes using FFT method. Along with the introduction of Lie group and symplectic method into seismic wave-field extrapolation, accurate approximation of matrix exponential based on Lie group and symplectic method becomes the hot research field. To solve matrix exponential approximation problem, the Second-kind Coordinates (SKC) method and Generalized Polar Decompositions (GPD) method of Lie group are of choice. SKC method utilizes generalized Strang-splitting algorithm. While GPD method utilizes polar-type splitting and symmetric polar-type splitting algorithm. Comparing to Pade approximation, these two methods are less in computation, but they can both assure the Lie group structure. We think SKC and GPD methods are prospective and attractive in research and practice.
Resumo:
To test preschoolers’ development of cognitive flexibility--an ability to solve a problem in one way and to then switch solution strategies, and the mechanism involved in the development, 3-5-year-olds are asked to perform switching tasks in which the experimenter manipulates the way the stimuli are presented: consecutive or simultaneous; the way the switching happens: between dimensions or within a dimension; the conceptual domains involved: shape, color, number and direction; the specific labels used. The main results of this work are presented below: (1) 3-5-year-olds’ cognitive flexibility develops with age, yet its development is not of the same speed in extra-dimensional switch tasks and inter-dimensional reversal tasks. 3-year-olds manifest some cognitive flexibility, but their performance is significantly worse than that of 4- and 5-year-olds. For the 3-year-olds, in reversal tasks, although 80% of the children passed the post-switch phrase in color task; less then 60% children passed the post-switch phrase in shape, number and direction tasks. In extra-dimensional tasks, 3-year-olds performance is worse than that in the reversal tasks. Less than 50% of the children passed the tasks. Children’s cognitive flexibility develops fast from 3-year-olds to 4-year-olds. Both 4-year-olds and 5-year-olds demonstrate high flexibility without significant difference between them. (2) Children’s flexibility in the conceptual domains of shape, color, number and direction follows different developing patterns. In inter-dimensional reversal tasks, 3-year-olds’ performance is not the same in the 4 conceptual domains, but the difference among the domains is insignificant in 4-and-5-year-olds. In extra-dimensional switching tasks, children’s performance on the 4 domain tasks is significantly different from one another in 3-, 4-, and 5-year-olds. (3) The way the stimuli are presented affects children’s development of cognitive flexibility. In inter-dimensional reversal tasks, 3-year-olds’ performance in consecutive presentation is significantly better than that in simultaneous presentation. 4- and 5-year-olds’ performance in the 2 presentations is not significantly different from each other. In extra-dimensional switch tasks, 3-, 4-, and 5-year-olds’ performance in the consecutive presentation is not significantly better than that in the simultaneous presentation (4) 3-, 4-, and 5-year-olds’ self-issued labeling aids their performance on the switching tasks. Children’ performance in the labeling condition is significantly better than that of no labeling. (5) 3-5-year-olds’ cognitive flexibility is highly correlated with their working memory and inhibition. Children’ development of cognitive flexibility is a process that involves activation of working memory and inhibition, in which the complexity of the task also plays a role.
Resumo:
Voice alarm plays an important role in emergency evacuation of public place, because it can provide information and instruct evacuation. This paper studied the optimization of acoustic and semantic parameters of voice alarms in emergency evacuation, so that alarm design can improve the evacuation performance. Both method of magnitude estimation and scale were implemented to investigate participants' perceived urgency of the alarms with different parameters. The results indicated that, participants evaluated the alarms with faster speech rate, with greater signal to noise ratio (SNR) and under louder noises more urgent. There was an interaction between noise level and content of voice alarm. Signals with speech rate below 4 characters / second were evaluated as non urgent at all. Intelligibility of the voice alarm was investigated by evaluating the key pointed recognition performance. The results showed that, speech rate’s effect was a marginal significance, and 7 characters / second has the highest intelligibility. It might because that the faster the signal spoken, the more attention was paid. Gender of speaker and SNR did not have a significant effect on the signals’ intelligibility. This paper also investigated impact of voice alarms' content on human behavior in emergency evacuation in a 3-D virtual reality environment. In condition of "telling the occupants what had happened and what to do", the number of participants who succeeded in evacuation was the largest. Further study, in which similar numbers of participants evacuate successfully in three conditions, indicated that the reaction time and evacuation time was the shortest in the aforesaid condition. Although one-way ANOVA shows that the difference was not significant, the results still provided some reference to the alarm design. In sum, parameters of voice alarm in emergency evacuation should be chosen to meet needs from both perceived urgency and intelligibility. Contents of the alarms should include "what had happened and what to do", and should vary according to noise levels in different public places.
Resumo:
This research objective was to investigate the working motivation in a large state-owned enterprise, Luoyang White Horse Company Group in Henan Province. Some standard methods, such as in-depth interview, questionnaire were employed. This research is divided into two parts: 1. The first is to investigate the factor structure of working motivation, by the way of survey questionnaire. 2. The second is to do a case study to the White Horse Company, by using survey questionnaire and interview methods. The results shows that: 1. Eight factors are extracted by the Exploring Factor Analysis. These factors include: material reward factor, leader factor, fairness factor, goal factor, mental reward factor, development factor, job factor, participation factor. The overall explanation is 56.0%. 2. By the One-Way ANOVA and Multiple Comparison, it is found that: working age, age, sex, education background, income and assignment all have a notable effect on some of the eight factors. 3. By the case study to the White Horse Company, it is found that there still is no a perfect motivating mechanism in the White Horse Company and the disproportion of reward and punishment has a disadvantageous effect on the worker's productivity.