49 resultados para Joints - Rangeof motion
Resumo:
Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.
Resumo:
A new method of reversibly moving US nanoparticles in the perpendicular direction was developed on the basis of the phase separation of block copolymer brushes. Polystyrene-b-(poly(methyl methaerylate)-co-poly(cadmium dimethacrylate)) (PS-b-(PMMA-co-PCdMA)) brushes were grafted from the silicon wafer by surface-initiated atom transfer radical polymerization (ATRP). By exposing the polymer brushes to H2S gas, PS-b-(PMNlA-co-PCdNlA) brushes were converted to polystyrene-b-(poly(methyl methacrylate) -co-poly(methacrylic acid)(CdS)) (PS-b-(PMMA-co-PMAA(CdS))) brushes, in which US nanoparticles were chemically bonded by the carboxylic groups of PMAA segment. Alternating treatment of the PS-b-(PMMA-co-PMAA(CdS)) brushes by selective solvents for the outer block (a mixed solvent of acetone and ethanol) and the inner PS block (toluene) induced perpendicular phase separation of polymer brushes, which resulted in the reversible lifting and lowering of US nanoparticles in the perpendicular direction. The extent of movement can be adjusted by the relative thickness of two blocks of the polymer brushes.
Resumo:
A new amorphous comblike polymer(CBP) based on methylvinyl ether/maleic anhydride alternating copolymer backbone and on oligooxyethylene side chain was synthesized The dynamic mechanical properties of CBP-Li salt complexes showed that there were two glass transitions. There are two peaks in the plot of the ionic conductivity vs. Li salt concentration. The plot of Log sigma against 1/(T-To) shows an unusual dual VTF behavior when using sidechain glass transition temperature (T-beta) as To.
Resumo:
Three kinds of high-performance polyimides 1 (poly(ketone-imide) PKI), 2 (poly(ether-imide) PEI) and 3 (poly(oxy-imide) POI) were studied using nuclear magnetic resonance (NMR). The NMR spectra of the polyimides were assigned according to the comprehensive consideration of the substitution effect of different substituting groups, viz. distortionless enhancement by polarization transfer (DEPT), no nuclear Overhauser effect (NNE), analysis of relaxation time, and two-dimensional correlated spectroscopy (COSY) techniques. The structural units of these three polyimides were determined. Carbon-13 and proton relaxation times for PEI and PKI were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (JS model) and anisotropic group rotation such as phenyl group rotation and methyl group rotation. Correlation times for the main-chain motion are in the tens of picosecond range which indicates the high flexibility of polyimide chains. Correlation times for phenyl group and methyl group rotations are more than 1 order of magnitude lower and approximately 1 order of magnitude higher than that of the main chain, respectively.
Resumo:
The proton spin-spin relaxation times (T-2(H)) at different temperatures (from 160 to 390 K) have been determined for polystyrene (PS) and four-arm star styrene-butadiene block copolymer (SB-4A) and its blends with PS of different molecular weights (M(PS)
Resumo:
A unified criterion is developed for initiation of non-cohesive sediment motion and inception of sheet flow under water waves over a horizontal bed of sediment based on presently available experimental data. The unified threshold criterion is of the single form, U-o = 2 pi C[1 + 5(T-R/T)(2)](-1/4), where U-o is the onset velocity of sediment motion or sheet flow, T is wave period, and C and T-R are the coefficients. It is found that for a given sediment, U-o initially increases sharply with wave period, then gradually approaches the maximum onset velocity U-o = 2 pi C and becomes independent of T when T is larger. The unified criterion can also be extended to define sediment initial motion and sheet flow under irregular waves provided the significant wave orbital velocity and period of irregular waves are introduced in this unified criterion.
Resumo:
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-epsilon turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
Resumo:
Experiments on the corrosion fatigue behaviour of welded joints of the steel for marine platform in air and seawater, and of the joints in seawater with cathodic protection, yielded data for linear regression to obtain fatigue life curves (Delta S-N-f). The laws of corrosion fatigue in welded joints of test steel are discussed with reference to those of A(587) and A(131) steel. In these experiments, the fatigue damage occurring at all welded joints around the weld interface resulted in the cracks and fractures. The fatigue life of the specimens in seawater with cathodic protection is longer than that in seawater Without protection.
Resumo:
本文介绍的仿人机器人具有差动腰部机构,它除了受自身的动力学影响以外,还受到手臂和车体运动以及外力、外力矩等对腰部机构关节力矩的影响。笔者利用高效牛顿-欧拉算法完成了仿人机器人的整体建模;在不考虑各关节间耦合运动的情况下,对整体动力学模型进行适当简化,得到了腰部机构的动力学模型。简化后的动力学模型既反映了机器人车体、腰部及双臂的动力学关系,又大大地减小了计算量,易于实现基于动力学的控制算法。基于动力学模型,给出了腰部机构PD伺服轨迹跟踪控制算法,并结合计算力矩方法用于补偿腰部机构两关节受到的力矩扰动。仿真分析表明,该控制方法可以明显提高腰部机构的位置跟踪精度,并提高仿人机器人的整体作业精度。
Resumo:
提出全地形轮式移动机器人的正逆运动学问题。将机器人看成一个混合串-并联多刚体系统,从每个轮-地接触点到机器人车体分别构成一个串联子系统,抛弃车轮纯滚动假设,在轮-地接触点处建立瞬时坐标系,考虑车轮的平面滑移,从而对每个串联子系统形成一个封闭的速度链。对于每个速度闭链,可直接在驱动轮轮心处写出从机器人各驱动轮到机器人本体之间的运动方程,将每个速度闭链的运动方程合并即可得到机器人的整体运动学模型。以一个具有被动柔顺机构的六轮全地形移动机器人为对象进行推导,该方法既考虑了地形不平的影响,又考虑了车轮的前向、侧向及转向滑移,已知机构参数后就可以直接写出机器人的速度方程,且便于运动学求解。该方法对于轮式移动机器人的运动学建模具有一般性,且具有物理意义明确、推导过程简洁等特点。