248 resultados para Internal resonance
Resumo:
In laser applications, the size of the focus spot can be reduced beyond the diffraction limit with a thin film of strong nonlinear optical Kerr effect. We present a concise theoretical simulation of the device. The origin of the super-resolution is found to be mainly from the reshaping effect due to the strongly nonlinear refraction mediated multi-interference inside the thin film. In addition, both diffraction and self-focusing effects have been explored and found negligible for highly refractive and ultrathin films in comparison with the reshaping effect. Finally, the theoretic model has been verified in experiments with single Ge2Sb2Te5 film and SiN/Si/SiN/Ge2Sb2Te2 multilayer structures. (c) 2006 American Institute of Physics.
Resumo:
A diode pumped injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved by using the resonance-detection technique in Q-switching operation. The pulsed oscillator laser uses a folded cavity to achieve compact construction. This system operates at 100 Hz and provides over 20 mJ/pulse of single-frequency 1064 nm output. The M-2 values of horizontal and vertical axes are 1.58 and 1.41, respectively. The probability of putting out single-longitudinal-mode pulses is 100%. The 355 nm laser output produced by frequency tripling has a linewidth less than 200 MHz. The laser can run over eight hours continually without mode hopping.
Resumo:
The local structure of Na-Al-P-O-F glasses, prepared by a novel sol-gel route, was extensively investigated by advanced solid-state NMR techniques. Al-21{F-19} rotational echo double resonance (REDOR) results indicate that the F incorporated into aluminophosphate glass is preferentially bonded to octahedral Al units and results in a significant increase in the concentration of six-coordinated aluminum. The extent of Al-F and Al-O-P connectivities are quantified consistently by analyzing Al-27{P-31} and Al-21{F-19} REDOR NMR data. Two distinct types of fluorine species were identified and characterized by various F-19{Al-27}, F-19{Na-23}, and F-19{P-31} double resonance experiments, which were able to support peak assignments to bridging (Al-F-Al, -140 ppm) and terminal (Al-F, -170 ppm) units. On the basis of the detailed quantitative dipole-dipole coupling information obtained, a comprehensive structural model for these glasses is presented, detailing the structural speciation as a function of composition.
Resumo:
Electric fields inside guided-mode resonance filters (GMRFs) may be intensified by resonance effects. The electric field enhancement is investigated in two GMRFs: one is resonant at normal incidence, the other at oblique incidence. It is shown that the two GMRFs exhibit different behaviors in their electric enhancement. Differences between the electric field distributions of the two GMRFs arise because coupling between counter-propagating modes occurs in the first case. It is also shown that the order of the electric field of maximum amplitude can be controlled by modulation of the dielectric constant of the grating. (c) 2006 Optical Society of America.
Resumo:
A method for the design of an all-dielectric nonpolarizing prism beam splitter utilizing the principle of frustrated total internal reflection is reported. The nonpolarizing condition for a prism beam splitter is discussed, and some single layer design examples are elaborated. The concept can be applied to a wide range of wavelengths and arbitrary transmittance values, and with the help of a computer design program examples of 400-700 nm, T-p = T-p = 0.5 +/- 0.01, with incident angles of 45 degrees and 62 degrees are given. In addition, the sensitivity and application of the design are also discussed. (c) 2006 Optical Society of America.
Resumo:
We present designs of high-efficiency compression grating based on total internal reflection (TIR) for picosecond pulse laser at 1053 nm. The setup is devised by directly etching gratings into the bottom side of a prism so that light can successfully enter (or exit) the compression grating. Dependence of the -1 order diffraction efficiencies on the constructive parameters is analyzed for TE- and TM-polarized incident light at Littrow angle by using Fourier modal method in order to obtain optimal grating structure. The electric field enhancement within the high-efficiency TIR gratings is regarded as another criterion to optimize the structure of the TIR gratings. With the criterion of high diffraction efficiency, low electric field enhancement and sufficient manufacturing latitude, TIR compression gratings with optimized constructive parameters are obtained for TE- and TM-polarized incident light, respectively. The grating for TE-polarized light exhibits diffraction efficiencies higher than 0.95 within 23 nm bandwidth and relatively low square of electric field enhancement ratio of 5.7. Regardless of the internal electric field enhancement, the grating for TM-polarized light provides diffraction efficiencies higher than 0.95 within 42 nm bandwidth. With compact structure, such TIR compression gratings made solely of fused silica should be of great interest for application to chirped pulse amplification (CPA) systems. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A normal-incidence nonpolarizing guided-mode resonance filter is designed. There are two waveguide layers and one grating layer in the filter. By adjusting the distance between the two waveguide layers, the same resonance wavelength for both TE and TM polarization can be achieved. An antireflection design method is also used to decrease the sideband reflection of the filter. The results show that the filter has high reflection, more than 99.9% at 500 nm, and the FW-HMs of TE- and TM-polarized light are 2.16 and 0.15 nm, respectively. (C) 2009 Optical Society of America
Surface plasmon resonance transmission filters at 1053 nm based on metallic grating with narrow slit
Resumo:
Metallic gratings with narrow slits can lead to special optical properties such as strongly enhancing the transmission and considerably strengthening the polarized effect. A narrow-band filter suitable for application in optical communication is designed by sandwiching a metallic grating between two identical dielectric films. The maximum transmission can reach 96% after optimizing the parameters of films and grating at a central wavelength of 1053 nm. It is the first time, to our knowledge, that such high transmission has been reported since the discovery of the extraordinarily high transmission through periodic holes or slits; moreover, the extremely polarized effect is also found in P mode of this symmetric grating.