36 resultados para Image pre-processing
Resumo:
In the complex structure areas, velocity field building and structure mapping are important for seismic exploration. With the development of seismic exploration, the methods of structure mapping, reservoir prediction and reservoir description all require high precious velocity field. And more accurate depth-structure maps are required for well site design. Aiming at the problems and defects in velocity analysis and structure mapping in oil seismic exploration, the paper which is based on the studies of real data in several areas combines the theories with practical application, and analyzes the precision and applicability of several methods of velocity model building. After that, the following methods are mainly studied: the coherence inversion methods based on the pre-stack CMP gathers or stacking velocity; the interval velocity inversion methods constrained by multi-well; the Random Simulation method; 3D Image Ray Map Migration method and the structure mapping in floating datum and in fixed datum, and then we conclude the method of building high precious seismic velocity field and structure mapping with variable velocity. Firstly, the paper analyses the distributing rule of the velocity variation in the areas with complex structures in the northwest of China, then points out that velocity is a crucial factor which influences the precision of structure mapping, and the velocity variations have something to do with the shapes of the structures, the variety of lithology and so on. The key point of improving the precision of seismic velocity field is to obtain a structure mapping with high precision. We also describe the range and conditions of these methods. Secondly, by comparing many popular methods of velocity model building, we propose a new method in the use of velocity model building. The new method is more effective in velocity model building under every kind of complex condition and is worthy of spreading. At last, the paper fingers out that it is a system engineering to study variable velocity mapping in every kind of complex structure areas. Every step of the work can affect the final results. So it is important to build high efficient and practical velocity model and the flows of mapping processing. The paper builds the flows and gives some examples. The method has been applied in more than ten exploring surveys. The application proves that this method could bring good effect on researching on low-amplitude trap, reservoir prediction, reservoir description and the integrated research of oil&gas geology. Keywords: structure mapping velocity model building complex structure variable velocity media
Resumo:
With the development of oil/gas seismic exploration, seismic survey for fracture/porosity type reservoir is becoming more and more important. As for China, since it has over 60% store of low porosity and low permeability oil/gas reservoir, it’s more urgent to validly describe fracture/porosity type oil/gas trap and proposing the related, developed seismic technique. To achieve mapping fracture/porosity region and its development status, it demands profound understanding of seismic wave propagation discipline in complex fractured/pored media. Meanwhile, it has profound scientific significance and applied worth to study forward modeling of fracture/porosity type media and pre-stacked reverse time migration. Especially, pre-stacked reverse-time migration is the lead edge technique in the field of seismology and seismic exploration. In this paper, the author has summarized the meaning, history and the present state of numerical simulation of seismic propagation in fractured/pored media and seismic exploration of fractured/pored reservoirs. Extensive Dilatancy Anisotropy (EDA) model is selected as media object in this work. As to forward modeling, due to local limitation of solving spatial partial derivative when using finite-difference and finite-element method, the author turns to pseudo-spectral method (PSM), which is based on the global characteristic of Fourier transform to simulate three-component elastic wave-field. Artifact boundary effect reduction and simulation algorithm stability are also discussed in the work. The author has completed successfully forward modeling coding of elastic wave-field and numerical simulation of two-dimensional and three-dimensional EDA models with different symmetric axis. Seismic dynamic and kinematical properties of EDA media are analyzed from time slices and seismic records of wave propagation. As to pre-stacked reverse-time migration for elastic wave-field in fractured/pored media, based on the successful experience in forward modeling results with PSM, the author has studied pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field in two dimensional EDA media induced by preferred fracture/pore distribution. At the same time, different image conditions will bring up what kind of migration result is detailed in this paper. The author has worded out software for pre-stacked reverse-time depth-domain migration of elastic wave-field in EDA media. After migration processing of a series of seismic shot gathers, influences to migration from different isotropic and anisotropy models are described in the paper. In summary, following creative research achievements are obtained: Realizing two-dimensional and three-dimensional elastic wave-field modeling for fractured/pored media and related software has been completed. Proposed pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field. Through analysis of the seismic dynamic and kinematical properties of EDA media, the author made a conclusion that collection of multi-component seismic data can provide important data basis for locating and describing the fracture/pore regions and their magnitudes and the preferred directions. Pre-stacked reverse-time depth-domain migration technique has the ability to reconstruct complex geological object with steep formations and tilt fracture distribution. Neglecting seismic anisotropy induced by the preferred fracture/pore distribution, will lead to the disastrous imaging results.
Resumo:
Multi-waves and multi-component get more and more attentions from oil industry. On the basis of existent research results, My research focuses on some key steps of OBC 4C datum processing. OBC datum must be preprocessed quite well for getting a good image. We show a flow chart of preprocess including attenuation of noise on multi-component datum、elimination ghost by summing P and Z and rotation of horizontal components. This is a good foundation for the coming steps about OBC processing. How to get exact converted point location and to analyze velocity are key points in processing reflection seismic converted wave data. This paper includes computing converted point location, analyzing velocity and nonhyperbolic moveout about converted waves. Anisotropic affects deeply the location of converted wave and the nonhyperbolic moveout. Supposed VTI, we research anisotropic effect on converted wave location and the moveout. Since Vp/Vs is important, we research the compute method of Vp/Vs from post-stack data and pre-stack data. It is a part of the paper that inversing anisotropic parameter by traveltime. Pre-stack time migration of converted wave is an focus, using common-offset Kirchhoff migration, we research the velocity model updating in anisotropic media. I have achieved the following results: 1) using continued Fractions, we proposed a new converted point approximate equation, when the offset is long enough ,the thomsen’s 2 order equation can’t approximate to the exact location of converted point, our equation is a good approximate for the exact location. 2) our new methods about scanning nonhyperbolic velocity and Vp/Vs can get a high quality energy spectrum. And the new moveout can fit the middle and long offset events. Processing the field data get a good result. 3) a new moveout equation, which have the same form as Alkhalifah’s long offset P wave moveout equation, have the same degree preciseness as thomsen’s moveout equation by testing model data. 4) using c as a function of the ratio offset to depth, we can uniform the Li’s and thomsen’s moveout equation in a same equation, the model test tell us choice the reasonable function C can improve the exact degree of Li’s and thomsen’s equation. 5) using traveltime inversion ,we can get anisotropic parameter, which can help to flat the large offset event and propose a model of anisotropic parameter which will useful for converted wave pre-stack time migration in anisotropic media. 6)using our pre-stack time migration method and flow, we can update the velocity model and anisotropic parameter model then get good image. Key words: OBC, Common converted Point (CCP), Nonhyperbolic moveout equation, Normal moveout correction, Velocity analysis, Anisotropic parameters inversion, Kirchhoff anisotropic pre-stack time migration, migration velocity model updating
Resumo:
The seismic wide-angle reflection/refraction method is the one of the most effective method for probing the crustal and upper mantle structure. It mainly uses the wide-angle reflection information from the boundary in the crust and the top boundary of the upper mantle to rebuild the crust and upper mantle structure. Through analyzing the reflection and transmission coefficients of various incident waves on the interface, we think relative to the pre-critical angle reflection information the post critical angle reflection information that received by wide-angle seismic data exists a time-shift effect with the offset variation, and then it must cause the error for velocity analysis and structure image. The feature of the wide-angle seismic wave field of the fourteen representative crust columns tell us that the wide-angle effects in the different representative tectonic units for the interface depth and the interval velocity in crust. We studied the features of the wide-angle seismic wave field through building the crust model and inverse its travel time by GA method to know the wide-angle influence on crustal velocity image. At last we finished the data processing of the Tunxi-Wenzhou wide-angle seismic profile. The results are as following: (1) Through building crust model, we labeled the travel time for all the phases by ray tracing method and remove wide-angle effects method, it revealed the wide-angle effect exists in the seismic data. (2) The travel time inversion by GA method can tell us that the depth by traditional ray tracing method is shallower than the result by remove wide-angle effects method, the latter can recover the crust structure model in effect. (3) We applied the two method mentioned before to the fourteen representative crust columns in China. It indicates that the removed wide-angle effect method in travel time inversion is reasonable and effective. (4) The real data processing from Tunxi-Wenzhou wide-angle seismic profile give us the basic structure through the two ways. The main influence exhibits in the difference of the interval velocity of the curst, and the wide-angle effects in shallow interface are stronger than the deep interface.
Resumo:
Fractured oil and gas reservoir is an important type of oil and gas reservoir, which is taking a growing part of current oil and gas production in the whole world. Thus these technologies targeted at exploration of fractured oil and gas reservoirs are drawing vast attentions. It is difficult to accurately predict the fracture development orientation and intensity in oil and gas exploration. Focused on this problem, this paper systematically conducted series study of seismic data processing and P-wave attributes fracture detection based on the structure of ZX buried mountain, and obtained good results. This paper firstly stimulated the propagation of P-wave in weak anisotropic media caused by vertical aligned cracks, and analyzed the rule of P-wave attributes’ variation associated with observed azimuth, such as travel-time, amplitude and AVO gradient and so on, and quantitatively described the sensitive degree of these attributes to anisotropy of fracture medium. In order to further study the sensitive degree of these attributes to anisotropy of fractures, meanwhile, this paper stimulated P-wave propagation through different types and different intensity anisotropic medium respectively and summarized the rule of these attributes’ variation associated with observed azimuth in different anisotropic medium. The results of these studies provided reliable references for predicting orientation, extensity and size of actual complicated cracked medium by P-wave azimuth attributes responses. In the paper, amounts of seismic data processing methods are used to keep and recover all kinds of attributes applied for fracture detection, which guarantee the high accurate of these attributes, thus then improve the accurate of fracture detection. During seismic data processing, the paper adopted the three dimensional F-Kx-Ky field cone filter technique to attenuate ground roll waves and multiple waves, then enhances the S/N ratio of pre-stack seismic data; comprehensively applying geometrical spread compensation, surface consistent amplitude compensation, residual amplitude compensation to recover amplitude; common azimuth processing method effectively preserves the azimuthal characteristics of P-wave attributes; the technique of bend ray adaptive aperture pre-stack time migration insures to obtain the best image in each azimuth. Application of these processing methods guaranteed these attributes’ accuracy, and then improved the accuracy of fracture detection. After comparing and analyzing a variety of attributes, relative wave impedance (relative amplitude) attribute is selected to inverse the orientation of fracture medium; attenuation gradient and corresponding frequency of 85% energy are selected to inverse the intensity of fracture medium; then obtained the fracture distribution characteristics of lower Paleozoic and Precambrian in ZX ancient buried mountains. The results are good accord with the characteristics of faults system and well information in this area.
Resumo:
This thesis mainly talks about the wavelet transfrom and the frequency division method. It describes the frequency division processing on prestack or post-stack seismic data and application of inversion noise attenuation, frequency division residual static correction and high resolution data in reservoir inversion. This thesis not only describes the frequency division and inversion in theory, but also proves it by model calculation. All the methods are integrated together. The actual data processing demonstrates the applying results. This thesis analyzes the differences and limitation between t-x prediction filter and f-x prediction filter noise attenuation from wavelet transform theory. It considers that we can do the frequency division attenuation process of noise and signal by wavelet frequency division theory according to the differences of noise and signal in phase, amplitude and frequency. By comparison with the f-x coherence noise, removal method, it approves the effects and practicability of frequency division in coherence and random noise isolation. In order to solve the side effects in non-noise area, we: take the area constraint method and only apply the frequency division processing in the noise area. So it can solve the problem of low frequency loss in non-noise area. The residual moveout differences in seismic data processing have a great effect on stack image and resolutions. Different frequency components have different residual moveout differences. The frequency division residual static correction realizes the frequency division and the calculation of residual correction magnitude. It also solves the problems of different residual correction magnitude in different frequency and protects the high frequency information in data. By actual data processing, we can get good results in phase residual moveout differences elimination of pre-stack data, stack image quality and improvement of data resolution. This thesis analyses the characters of the random noises and its descriptions in time domain and frequency domain. Furthermore it gives the inversion prediction solution methods and realizes the frequency division inversion attenuation of the random noise. By the analysis of results of the actual data processing, we show that the noise removed by inversion has its own advantages. By analyzing parameter's about resolution and technology of high resolution data processing, this thesis describes the relations between frequency domain and resolution, parameters about resolution and methods to increase resolution. It also gives the processing flows of the high resolution data; the effect and influence of reservoir inversion caused by high resolution data. Finally it proves the accuracy and precision of the reservoir inversion results. The research results of this thesis reveal that frequency division noise attenuation, frequency residual correction and inversion noise attenuation are effective methods to increase the SNR and resolution of seismic data.