154 resultados para IRF6 TRANSCRIPTION LEVELS
Resumo:
With comparative genomics approaches, we evaluated the evolutionary characteristics of conservation of exons which are expressed abundantly, moderately or lowly in mammals. Using non-coding regions and pseudogenes as controls, sequence identity, phastCons
Resumo:
Epigenetic regulation in insects may have effects on diverse biological processes. Here we survey the methylome of a model insect, the silkworm Bombyx mori, at single-base resolution using Illumina high-throughput bisulfite sequencing (MethylC-Seq). We conservatively estimate that 0.11% of genomic cytosines are methylcytosines, all of which probably occur in CG dinucleotides. CG methylation is substantially enriched in gene bodies and is positively correlated with gene expression levels, suggesting it has a positive role in gene transcription. We find that transposable elements, promoters and ribosomal DNAs are hypomethylated, but in contrast, genomic loci matching small RNAs in gene bodies are densely methylated. This work contributes to our understanding of epigenetics in insects, and in contrast to previous studies of the highly methylated genomes of Arabidopsis(1) and human(2), demonstrates a strategy for sequencing the epigenomes of organisms such as insects that have low levels of methylation.
Resumo:
In plants and less-advanced animal species, such as C.elegans, introduction of exogenous double-stranded RNA (dsRNA) into cells would trigger degradation of the mRNA with homologous sequence and interfere with the endogenous gene expression. It might represent an ancient anti-virus response which could prevent the mutation in the genome that was caused by virus infection or mobile DNA elements insertion. This phenomenon was named RNA interference, or RNAi. In this study, RNAi was used to investigate the function of basonuclin gene during oogenesis. Microinjection of dsRNA directed towards basonuclin into mouse germinal-vesicle-intact (GV) oocytes brought down the abundance of the cognate mRNA effectively in a time- and concentration-dependent manner. This reduction effect was sequence-specific and showed no negative effect on other non-homologous gene expression in oocytes, which indicated that dsRNA can recognize and cause the degradation of the transcriptional products of endogenous basonuclin gene in a sequence-specific manner. Immunofluorescence results showed that RNAi could reduce the concentration of basonuclin protein to some extent, but the effect was less efficient than the dsRNA targeting towards tPA and cMos which was also expressed in oocytes. This result might be due to the long half life of basonuclin protein in oocytes and the short reaction time which was posed by the limited life span of GV oocytes cultured in vitro. In summary, dsRNA could inhibit the expression of the cognate gene in oocytes at both mRNA and protein levels. The effect was similar to Knock-out technique which was based on homologous recombination. Furthermore, hairpin-style dsRNA targeting basonuclin gene could be produced by transcription from a recombinant plasmid and worked efficiently to deplete the cognate mRNA in oocytes. This finding offered a new way to study the function of basonuclin in the early stage of oogenesis by infection of primordial oocytes with the plasmid expressing hairpin-style basonuclin dsRNA.
Resumo:
A comparative analysis on the intron sequence oligonucleotide usages in two sets of yeast genes with higher and lower transcription frequencies, respectively, has shown that the intron sequence structures of the two sets of genes are different. There are more potential binding sites for transcription factors in the introns of the genes with high transcription frequencies. So it is speculated that introns regulate the transcription of genes. But more evidences are needed to favor this speculation. The detailed comparative analyses on the distribution ( length and position) of introns and exons in the two sets of gene sequences also show that there is an obvious boundary between the lengths of the two sets of introns. There is no boundary between the lengths of the two sets of exons, although the means of their lengths are of discrepancy. The situation of the gene lengths ( length of intron and exon) is similar to exon lengths. As far as the relative position, the introns in two sets of genes all have a bias toward the 5' ends of genes. But as the actual position is considered, more introns in high transcription genes have a tendency to be located toward the 5' ends of genes, some even located at 5'-UTR. These results suggest that the gene transcription rates are related to the length of intron, but not to the lengths of exons and genes sequences. The positions of introns may also influence the transcription rates. The transcriptional regulation of introns may be correlative with the transcriptional regulation of the upstream of genes, or be its continuous action.
Resumo:
The effects of aniracetam on extracellular amino acid levels in the hippocampus of conscious gerbils, with or without transient cerebral ischemia/reperfusion, were measured by microdialysis and reverse phase-high performance liquid chromatography. Increased extracellular levels of aspartate and glutamate that were observed in the hippocampus of conscious gerbils during transient global forebrain ischemia were reversed by aniracetam. In contrast, the level of extracellular gamma-aminobutyric acid was increased, while taurine was maintained at a higher level than other amino acids by administration of aniracetam (100 mg/kg, p.o.) 60 min before ischemia. Further, in contrast to ischemic animals, administration of aniracetam (100 mg/kg, p.o.) enhanced the release of glutamate and aspartate in the normal gerbil hippocampus. The results suggest that these effects might be due to a partial calcium agonist activity of aniracetam, and that the effects of aniracetam on amino acid levels might be a mechanism of protection against delayed neuronal death in the ischemic hippocampus, thereby improving memory dysfunction induced by ischemia/reperfusion. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We conducted a comparative statistical analysis of tetra- through hexanucleotide frequencies in two sets of introns of yeast genes. The first set consisted of introns of genes that have transcription rates higher than 30 mRNAs/h while the second set contained introns of genes whose transcription rates were lower than or equal to 10 mRNAs/h. Some oligonucleotides whose occurrence frequencies in the first set of introns are significantly higher than those in the second set of introns were detected. The frequencies of occurrence of most of these detected oligonucleotides are also significantly higher than those in the exons flanking the introns of the first set. Interestingly some of these detected oligonucleotides are the same as well known "signature" sequences of transcriptional regulatory elements. This could imply the existence of potential positive regulatory motifs of transcription in yeast introns. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Thyroid hormones (THs) play an important role in the normal development and physiological functions in fish. Environmental chemicals may adversely affect thyroid function by disturbing gene transcription. Perfluorooctane sulfonate (PFOS), a persistent compound, is widely distributed in the aquatic environment and wildlife. In the present study, we investigated whether PFOS could disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Zebrafish embryos were exposed to various concentrations of PFOS (0, 100, 200 and 400 mu g L-1) and gene expression patterns were examined 15 d post-fertilization. The expression of several genes in the HIPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid peroxidase (TPO), transthyretin (TTR), ioclothyronine deiodinases (Dio1 and Dio2) and thyroid receptor (TR alpha and TR beta), was quantitatively measured using real-time PCR. The gene expression levels of CRF and TSH were significantly up-regulated and down-regulated, respectively, upon exposure to 200 and 400 mu g L-1 PFOS. A significant increase in NIS and Diol gene expression was observed at 200 mu g L-1 PFOS exposure, while TG gene expression was down-regulated at 200 and 400 mu g L-1 PFOS exposure. TTR gene expression was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of TR alpha and TR beta gene expression, respectively, was observed upon exposure to PFOS. The whole body thyroxine (T-4) content remained unchanged, whereas triiodothyronine (T-3) levels were significantly increased, which could directly reflect disrupted thyroid hormone status after PFOS exposure. The overall results indicated that PFOS exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by PFOS could occur at several steps in the synthesis, regulation, and action of thyroid hormones. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
It has been demonstrated that growth hormone (GH) transgenic fish often posses a trait for fast growth. Here, we investigated the growth of F-4 'all-fish' GH transgenic carp Cyprinus carpio and their serum GH levels for a year. The results showed that F-4 all-fish GH transgenic carp were significantly larger in body mass (c. two-fold, P < 0 center dot 001) and body length (c. 1 center dot 3 fold, P < 0 center dot 001), compared with the non-transgenic group. The discrepancy of serum GH levels between the transgenic carp group and control group is 54 fold, when the water temperature was 12-34 degrees C. When the water temperature decreased to 3 center dot 5 degrees C in January, the discrepancy was 256 fold. The serum GH level of the transgenic group was relatively constant, while that of control varied greatly based on month and water temperature. The changes of growth rates between the transgenic group and the control group were similar for a year. Taken together, the results indicated that F-4 all-fish GH transgenic carp had not only higher and constant serum GH levels but also a significant fast-growing effect, compared with the control. To our knowledge, this is the first report on a one-year investigation of growth trait and serum growth hormone level in F-4 all-fish GH transgenic carp.
Resumo:
In adaptation to new environments, organisms may accumulate mutations within encoding sequences to modify protein characteristics or acquire mutations within regulatory sequences to alter gene expression levels. With the development of antifreeze capability as the example, this study presents the evidence that change in gene expression level is probably the most important mechanism for adaptive evolution in a green alga Chlorella vulgaris. C. vulgaris NJ-7, an isolate from Antarctica, possesses an 18S rRNA sequence identical to that of a temperate isolate, SAG211-11b/UTEX259, but shows much higher freeze tolerance than the later isolate. The chromosomal DNA/cDNA of four antifreeze genes, namely hiC6, hiC12, rpl10a and hsp70, from the two isolates of C. vulgaris were cloned and sequenced, and very few variations of deduced amino acid sequences were found. In contrast, the transcription of hiC6, hiC12 and rpl10a was greatly intensified in NJ-7 compared to that in UTEX259, which is correlated to the significantly enhanced freeze tolerance of the Antarctica isolate. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
P>An 83-day growth trial was conducted using a flow-through system to examine the effects of different dietary iron levels on growth and hepatic iron concentration in juvenile gibel carp (Carassius auratus gibelio). Six purified diets supplemented with different levels of iron (0, 10, 30, 60, 100 and 200 mg kg(-1)) (as ferrous sulfate) were fed to triplicate groups of fish (initial weight 2.12 +/- 0.00 g per fish). The results showed that the addition of iron to the basal diet did not significantly affect the specific growth rate (SGR), feed efficiency (FE), survival, red blood cell amount (RBC), hemoglobin content (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) or mean corpuscular hemoglobin concentration (MCHC). Hepatic iron concentration and hematocrit (Hct) were significantly influenced by dietary iron level (P < 0.05). On the basis of the iron concentration for the maintenance of optimum hepatic iron concentration and Hct, it was concluded that the dietary iron concentration of juvenile gibel carp should be not less than 202 mg Fe kg(-1) diet.
Resumo:
The eleven-nineteen lysine-rich leukemia (ELL) gene undergoes translocation and fuses in-frame to the multiple lineage leukemia gene in a substantial proportion of patients suffering from acute forms of leukemia. Studies show that ELL indirectly modulates transcription by serving as a regulator for transcriptional elongation as well as for p53, U19/Eaf2, and steroid receptor activities. Our in vitro and in vivo data demonstrate that ELL could also serve as a transcriptional factor to directly induce transcription of the thrombospondin-1 (TSP-1) gene. Experiments using ELL deletion mutants established that full-length ELL is required for the TSP-1 up-regulation and that the trans-activation domain likely resides in the carboxyl terminus. Moreover, the DNA binding domain may localize to the first 45 amino acids of ELL. Not surprisingly, multiple lineage leukemia-ELL, which lacks these amino acids, did not induce expression from the TSP-1 promoter. In addition, the ELL core-response element appears to localize in the -1426 to -1418 region of the TSP-1 promoter. Finally, studies using zebrafish confirmed that ELL regulates TSP-1 mRNA expression in vivo, and ELL could inhibit zebrafish vasculogenesis, at least in part, through up-regulating TSP-1. Given the importance of TSP-1 as an anti-angiogenic protein, our findings may have important ramifications for better understanding cancer.
Resumo:
An 8-week growth trial was carried out in a semi-recirculation system to investigate the effect of high dietary starch levels on the growth performance, blood chemistry, starch utilization and body composition of gibel carp (Carassius auratus var. gibelio). Five isonitrogenous and isocarloric experimental diets were formulated to contain different starch levels (24%, 28%, 32%, 36% and 40% respectively). Triplicate groups of fish (24 fish per tank with an average body weight, of 8.5 g) were assigned to each diet. The results showed that dietary carbohydrate levels significantly affected the growth performance, hepatopancreatic lipid content, pyruvate kinase (PK) activity and whole-body lipid content. Growth performance, body crude lipid and plasma glucose concentrations showed a decreasing trend with an increase in dietary starch from 24% to 40%. Pyruvate kinase activities and hepatopancreatic lipid content showed an increasing trend with the dietary starch increasing from 24% to 32%, and then a decreasing trend with the dietary starch increasing from 32% to 40%. No significant difference in the hepatopancreatic hexokinase (HK) activity, plasma triglyceride contents, body crude protein, ash and calcium (Ca) and phosphorus (P) contents was observed between different treatments. In conclusion, higher dietary starch levels (32-40%) significantly (P < 0.05) decreased the growth of gibel carp in the present study.
Resumo:
Microcystins (MCs) are cyanobacterial toxins in water blooms that have received increasing attention as a public biohazard for human and animal health. Previous studies were mainly focused on the toxic effects on adult fish, rather than juvenile or larvae, and the response of fish immune system were usually neglected. This paper presents the first data of the effects of microcystin-LR (MC-LR) on transcription of several genes essential for early lymphoid development (Rag1, Rag2, Ikaros, GATA1, Lck and TCR alpha) and heat shock proteins (HSP90, HSP70, HSP60, HSP27) in zebrafish larvae. Relative changes of mRNA transcription were analyzed by real time PCR. The transcription of Rag1, Rag2, Ikaros, GATA1, Lck and TCR alpha were up-regulated when following exposure to 800 mu g/L MC-LR, which may indicate that specific lymphocytes differentiation and TCR/lg arrangement are induced to counteract the toxic effects of MC-LR. It was also interesting to note the dramatically increased transcription of HSP90. HSP70, HSP60 and HSP27, which may indicate their important roles as molecular chaperones under oxidative stress. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A limnological study was carried out to determine the responses of superoxide dismutase (SOD) activities and soluble protein (SP) contents of 11 common aquatic plants to eutrophication stress. Field investigation in 12 lakes in the middle and lower reaches of the Yangtze River was carried out from March to September 2004. Our results indicated that non-submersed (emergent and floating-leafed) plants and submersed plants showed different responses to eutrophication stress. Both SOD activities of the non-submersed and submersed plants were negatively correlated with their SP contents (P < 0.000 1). SP contents of non-submersed plants were significantly correlated with all nitrogen variables in the water (P < 0.05), whereas SP contents of submersed plants were only significantly correlated with carbon variables as well as ammonium and Secchi depth (SD) in water (P < 0.05). Only SOD activities of submersed plants were decreased with decline of SD in water (P < 0.001). Our results indicate that the decline of SOD activities of submersed plants were mainly caused by light limitation, this showed a coincidence with the decline of macrophytes in eutrophic lakes, which might imply that the antioxidant system of the submersed plants were impaired under eutrophication stress.
Resumo:
The endocrine response of crucian carp injected intraperitoneally with extracted microcystins (MC) was investigated in this study. Fish were injected intraperitoneally either with 0.75% NaCl (control) and Microcystis extract corresponding to 150 and 600 mu g microcystins per kg body weight. The plasma levels of triiodothyronine (T-3), thyroxine (T-4), free triiodothyronine (FT3), free thyroxine (FT4), and cortisol were determined at 0, 1, 3, 12, 24. and 48 h post-administration of MC-containing extract. Treated fish displayed abnormal behaviors, Such as a startle response and disoriented swimming, as well as changes in ventilation rates. Plasma cortisol concentrations of fish in both dose groups significantly increased after administration of extracted MC and remained high throughout the experiment, which suggested that MC elicited a stress response in treated fish. The profiles of cortisol changes in treated fish appeared to be dose dependent, indicating that fish in the high dose group experienced greater MC-incluced disturbance. Mortality occurred after 12 h in the high dose group. Plasma levels of T-4, T-3, FT4, and FT3 did not vary significantly between the control fish. In contrast to this, fish exposed to MC-containing extract showed significant declines in T-3, FT4, and FT3 levels in a dose-depenclent manner throughout the experiment. Plasma T4 levels, however, did not vary significantly in the low dose group, whereas they decreased significantly it 48 h post injection in the high dose group. This study demonstrates that administration of microcystins-containing extract causes a stress response and reduces the plasma levels of thyroid hormones in crucian carp. These results illustrate that microcystins exerted potent effects on the endocrine system of crucian carp, through activating their hypothalamus-pituitary- interrenal axis and disturbing thyroid function. (c) 2008 Elsevier Ltd. All rights reserved.