67 resultados para ICF CLASSIFICATION
Resumo:
Nucleosides in human urine and serum have frequently been studied as a possible biomedical marker for cancer, acquired immune deficiency syndrome (AIDS) and the whole-body turnover of RNAs. Fifteen normal and modified nucleosides were determined in 69 urine and 42 serum samples using high-performance liquid chromatography (HPLC). Artificial neural networks have been used as a powerful pattern recognition tool to distinguish cancer patients from healthy persons. The recognition rate for the training set reached 100%. In the validating set, 95.8 and 92.9% of people were correctly classified into cancer patients and healthy persons when urine and serum were used as the sample for measuring the nucleosides. The results show that the artificial neural network technique is better than principal component analysis for the classification of healthy persons and cancer patients based on nucleoside data. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this paper is to show that Dempster-Shafer evidence theory may be successfully applied to unsupervised classification in multisource remote sensing. Dempster-Shafer formulation allows for consideration of unions of classes, and to represent both imprecision and uncertainty, through the definition of belief and plausibility functions. These two functions, derived from mass function, are generally chosen in a supervised way. In this paper, the authors describe an unsupervised method, based on the comparison of monosource classification results, to select the classes necessary for Dempster-Shafer evidence combination and to define their mass functions. Data fusion is then performed, discarding invalid clusters (e.g. corresponding to conflicting information) thank to an iterative process. Unsupervised multisource classification algorithm is applied to MAC-Europe'91 multisensor airborne campaign data collected over the Orgeval French site. Classification results using different combinations of sensors (TMS and AirSAR) or wavelengths (L- and C-bands) are compared. Performance of data fusion is evaluated in terms of identification of land cover types. The best results are obtained when all three data sets are used. Furthermore, some other combinations of data are tried, and their ability to discriminate between the different land cover types is quantified