39 resultados para Hydrothermal process
Resumo:
It was explored by density functional calculations that exchanged La or P species exert great influence on the local Al sites as well as on the adjacent exchanged species. In partially exchanged La- or P/H-ZSM-5 zeolite, some of the Al sites will fall off from the zeolite framework even more easily than in H-form ZSM-5, consistent with our XRF experiments. However, when exchanged by both La and P species, Al at either of the two exchanged sites shows better stability compared to H-from. zeolite. La and P species will interact strongly with each other, as evidenced by the charge donation process and the shortening of P-O-1 bond length. It was just the cooperation of La and P species that enabled RSCC catalysts worked normally under severe conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Density functional calculations have been employed to investigate the locating and binding of lanthanum cation, i.e., La(OH)(2)(+), on HZSM-5 zeolite. Through geometry optimization, it was determined that lanthanum ions are favorably accommodated in the two 6-T rings of the straight channels (Clusters 1 and 2, see Sec. III A for details). Cluster 1 was found to exist in prior to Cluster 2 due to the preference of Al substitution in the T11 site (Cluster 1) rather than in the T8 site (Cluster 2). Geometry-optimization of Cluster 1 containing another two lanthanide ions Nd3+ and Yb3+ was also carried out and it was found that a monotonic decrease in Ln-O bond length will take place as the atomic number increases, conforming well to the rule of lanthanide contraction. Some of the optimized parameters are comparable to the corresponding experimental values in Y zeolite, which confirms that the optimized configurations are acceptable. The average frequencies of hydroxyls attached to La3+ or Yb3+ in Cluster 1 fall at 3609.16 and 3579.76 cm(-1), respectively, with the gap of these two frequencies close to that in the sodalite cage of Y zeolite. Compared to H-form zeolite, the charges on both Al and O atoms in Ln-ZSM-5 zeolite show an obvious increase, which will undoubtedly lead to a stronger mutual interaction and hence enhance the stability of the [AlO4](-) anion. Moreover, the Ln(OH)(2)(+) seem to have thickened the zeolite framework, which can effectively retard the process of dealumination. Through the evaluation of the possibility for dimer formation, it turned out that when the exchange degree arrived to approximately 0.28, lanthanum monomers began to aggregate into dimers, and were completely converted into dimers when the exchange degree approached 0.60. (C) 2003 American Institute of Physics.
Preparation and luminescence properties of Mn2+-doped ZnGa2O4 nanofibers via electrospinning process
Resumo:
One-dimensional Mn2+-doped ZnGa2O4 nanofibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. SEM results indicated that the as-formed precursor fibers and those annealed at 700 degrees C are uniform with length of several tens to hundred micrometers, and the diameters of the fibers decrease greatly after being heated at 700 degrees C. Under ultraviolet excitation (246 nm) and low-voltage electron beams (1-3 kV) excitation, the ZnGa2O4:Mn2+ nanofibers presents the blue emission band of the ZnGa2O4 host lattice and the strong green emission with a peak at 505 nm corresponding to the T-4(1)-(6)A(1) transition of Mn2+ ion.
Resumo:
Europium doped hydroxyapatite (Eu:HAp) nanosized particles with multiform morphologies have been successfully prepared via a simple microemulsion-mediated process assisted with microwave heating. The physicochemical properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra, and the kinetic decays, respectively. The results reveal that the obtained Eu:HAp particles are well assigned to the hexagonal lattice structure of the hydroxyapatite phase. Additionally, it is found that samples exhibit uniform morphologies which can be controlled by altering the pH values. Furthermore, the samples show the characteristic D-5(0)-F-7(1-4) emission lines of Eu3+ excited by UV radiation.
Resumo:
Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.
Resumo:
In this Article, we demonstrate an effective hydrothermal route for the synthesis of multiple PDDA-protected (PDDA = poly(diallyl dimethylammonium) chloride) noble-metal (including silver, platinum, palladium, and gold) nanostructures in the absence of any seeds and surfactants, in which PDDA, an ordinary and water-soluble polyelectrolyte, acts as both a reducing and a stabilizing agent. Under optimal experimental conditions, Ag nanocubes, Pt and Pd nanopolyhedrons, and Au nanoplates can be obtained, which were characterized by transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. More importantly, the nanostrucfures synthesized show potential applications in surface-enhanced Raman scattering and electrocatalysis, in which Ag nanocubes and Pt nanopolyhedrons were chosen as the examples, respectively.
Resumo:
Nanocrystals and powders of KMgF3 doped with Eu2+ were synthesized by the microemulsion method and the solvothermal process, respectively. The emission and excitation spectra of KMgF3:Eu2+ phosphors were measured and compared with those of the samples synthesized through a solid. state reaction, Bridgman-Stockbarger method, and mild hydrothermal technique. The KMgF3: Eu2+ samples synthesized by means of the microemulsion method and the solvothermal process show only a sharp emission peak located at 360 nm, in the emission spectra, which arises from the f -> f(P-6(1/2)-> S-8(1/2)) transition of Eu2+. The broad emission bands appear at 420 nm,,which arises from Eu2+ <- O2- cannot be observed(in the mild hydrothermal and single crystal samples, the emission peak at 420 nm besides the emission of Eu2+ at 360 nm is observed). In the excitation spectrum of the KMgF3: Eu2+ samples synthesized by the microemulsion method and the solvothermal process, the excitation peaks show an intensive blue shift. The blue shift can he attributed to the lower oxygenic content in the KMgF3: Eu2+ samples synthesized by the microemulsion method and the solvothermal process.
Resumo:
The complex fluoride LiBaF3 and LiBaF3:M(M = Eu, Ce) is solvothermally synthesized at 180 degreesC and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. In the solvothermal process, the solvents, molar ratios of initial mixtures and reaction temperature play important roles in the formation of products. The excitation and emission spectra of the LiBaF3:M(M= Eu,Ce) have been measured by fluorescence spectrophotometer. In the LiBaF3: Eu emission spectra, there is one sharp line emission located at 360 nm arising from f --> f transition of Eu2+ in the host lattice, and typical doublet 5d-4f emission of Ce3+ in LiBaF3 powder is shown.
Resumo:
The complex fluoride LiBaF3 is solvothermally synthesized at 180degreesC and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. In the solvothermal process, the solvents, mole ratios of initial mixtures and reaction temperature play important roles in the growth of the single crystal.