39 resultados para Hybridization, Vegetable
Resumo:
To develop genetic and physical maps for shrimp, accurate information on the actual number of chromosomes and a large number of genetic markers is needed. Previous reports have shown two different chromosome numbers for the Pacific whiteleg shrimp, Penaeus vannamei, the most important penaeid shrimp species cultured in the Western hemisphere. Preliminary results obtained by direct sequencing of clones from a Sau3A-digested genomic library of P. vannamei ovary identified a large number of (TAACC/GGTTA)-containing SSRs. The objectives of this study were to (1) examine the frequency of (TAACC)(n) repeats in 662 P. vannamei genomic clones that were directly sequenced, and perform homology searches of these clones, (2) confirm the number of chromosomes in testis of P. vannamei, and (3) localize the TAACC repeats in P. vannamei chromosome spreads using fluorescence in situ hybridization (FISH). Results for objective I showed that 395 out of the 662 clones sequenced contained single or multiple SSRs with three or more repeat motifs, 199 of which contained variable tandem repeats of the pentanucleotide (TAACC/GGTTA),, with 3 to 14 copies per sequence. The frequency of (TAACC)n repeats in P. vannamei is 4.68 kb for SSRs with five or more repeat motifs. Sequence comparisons using the BLASTN nonredundant and expressed sequence tag (EST) databases indicated that most of the TAACC-containing clones were similar to either the core pentanucleotide repeat in PVPENTREP locus (GenBank accession no. X82619) or portions of 28S rRNA. Transposable elements (transposase for Tn1000 and reverse transcriptase family members), hypothetical or unnamed protein products, and genes of known function such as 18S and 28S rRNAs, heat shock protein 70, and thrombospondin were identified in non-TAACC-containing clones. For objective 2, the meiotic chromosome number of P. vannamei was confirmed as N = 44. For objective 3, four FISH probes (P1 to P4) containing different numbers of TAACC repeats produced positive signals on telomeres of P. vannamei chromosomes. A few chromosomes had positive signals interstitially. Probe signal strength and chromosome coverage differed in the general order of P1 > P2 > P3 > P4, which correlated with the length of TAACC repeats within the probes: 83, 66, 35, and 30 bp, respectively, suggesting that the TAACC repeats, and not the flanking sequences, produced the TAACC signals at chromosome ends and TAACC is likely the telomere sequence for P. vannamei.
Resumo:
The ovary of triploid shrimp Fenneropenaeus chinensis was apparently impaired compared to that of the diploid shrimp at the same age. Therefore triploid shrimp ovary is possible to be taken as a model to understand the mechanism of ovary development of shrimp compared to that of the ovary of diploid shrimp at the same age. In the present study, a suppression subtractive hybridization (SSH) technique was applied to identify differentially expressed genes in the ovary between diploid and triploid shrimp. For the forward library (RNA from the ovary of triploid shrimp as the tester), 54 genes were identified. For the reverse library (RNA from the ovary of diploid shrimp as the tester), 16 genes were identified. The identified genes encoded proteins with multiple functions, including extracellular matrix components, cytoskeleton, cell growth and death, metabolism, genetic information processing, signal transduction/transport or immunity related proteins. Eleven differentially expressed genes were selected to be confirmed in the ovaries of triploid and diploid shrimp by semi-quantitative RT-PCR. Genes encoding spermatogonial stem-cell renewal factor, cytochrome c oxidase subunits I and II, clottable protein, antimicrobial peptide and transposase showed up-regulated expressions in the ovary of triploid shrimp. Genes encoding tubulin, cellular apoptosis susceptibility protein, farnesoic acid O-methyltransferase, thrombospondin and heat shock protein 90 genes showed higher expressions in the ovary of diploid shrimp. The differential expressions of the above genes are suggested to be related to the ovary development of shrimp. It will provide a new clue to uncover the molecular mechanisms underlying the ovarian development in penaeid shrimp. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
TO understand possible reproductive interaction between Crassostrea ariakensis (Fujita, 1913) and C. sikamea (Amemiya, 1928), which coexist ill estuaries of China and Japan, we conducted 2 X 2 factorial crosses between the two species. Asymmetry in fertilization success was observed where C. sikamea eggs can be fertilized be C. ariakensis the receprocal cross resulted in no fertilization. Fertilization Success ill C.sikamea female X C. ariakemvis male (SA) crosses was lower than that in the two intraspecific crosses and produced larvae that had similar growth the rate as their maternal species during the first nine days because of maternal effects. After that, genome incompatibility casted negative effects on the growth and survival of the hybrid larvae. Most hybrid larvae died during metamorphosis. but a small number of spat survived. Genetic analysis revealed that the survived SA spat contained DNA from both species and were the hybried. This study demonstrates that hybridization between C. ariakensis and C. sikamea is possible in one direction.
Resumo:
Chromosome identification is an essential step in genomic research, which so far has not been possible in oysters. We tested bacteriophage P1 clones for chromosomal identification in the eastern oyster Crassostrea virginica, using fluorescence in situ hybridization (FISH). P1 clones were labeled with digoxigenin-11-dUTP using nick translation. Hybridization was detected with fluorescein-isothiocyanate-labeled anti-digoxigenin antibodies and amplified with 2 layers of antibodies. Nine of the 21 P1 clones tested produced clear and consistent FISH signals when Cot-1 DNA was used as a blocking agent against repetitive sequences. Karyotypic analysis and cohybridization positively assigned the 9 P1 clones to 7 chromosomes. The remaining 3 chromosomes can be separated by size and arm ratio. Five of the 9 P1 clones were sequenced at both ends, providing sequence-tagged sites that can be used to integrate linkage and cytogenetic maps. One sequence is part of the bone morphogenetic protein type 1b receptor, a member of the transforming growth factor superfamily, and mapped to the telomeric region of the long arm of chromosome 2. This study shows that large-insert clones such as P1 are useful as chromosome-specific FISH probes and for gene mapping in oysters.
Resumo:
Chromosomal location of the 5S ribosomal RNA gene was studied in the eastern oyster, Crassostrea virginica Gmelin. using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos, and the FISH probe was made by PCR (polymerase chain reaction) amplification of the 5S rRNA gene and labeled by incorporation of digoxigenin-1 1-dUTP during PCR. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. Two pairs of FISH signals were observed on metaphase chromosomes. Karyotypic analysis showed that the 5S rRNA gene cluster is interstitially located on short arms of chromosomes 5 and 6. On chromosome 5, the 5S rRNA genes were located immediately next to the centromere, whereas on chromosome 6, they were located approximately half way between the telomere and the centromere. Chromosomes of C. virginica are difficult to identify because of their similarities in size and arm ratio, and the chromosomal location of 5S rRNA genes provides unambiguous identification of chromosomes 5 and 6. Previous studies have mapped the major rRNA gene cluster (18S-5.8S-28S) to chromosome 2. and this study shows that the 5S rRNA gene cluster is not linked to the major rRNA genes and duplicated during evolution.
Resumo:
Karyotype and chromosomal location of the major ribosomal RNA genes were studied in the hard clam (Mercenaria mercenaria Linnaeus) using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos. Internal transcribed spacers (ITS) between major RNA genes were amplified and used as FISH probes. The probes were labeled with digoxigenin-11-dUTP by polymerase chain reaction and detected with fluorescein-labeled anti-digoxigenin antibodies. FISH with the ITS probes produced two to four signals per nucleus or metaphase. M. mercenaria had a haploid number of 19 chromosomes with a karyotype of seven metacentric, four metacentric or submetacentric, seven submetacentric, and one submetacentric or subtelocentric chromosomes (7M + 4M/SM + 7SM + 1SM/ST). Two ITS loci were observed: one located near the centromere on the long arm of Chromosome 10 and the other at the telomere of the short arm of Chromosome 12. FISH signals on Chromosome 10 are strong and consistent, while signals on Chromosome 12 are variable. This study provides the first karyotype and chromosomal assignment of the major RNA genes in M. mercenaria. Similar studies in a wide range of species are needed to understand the role of chromosomal changes in bivalve evolution.
Resumo:
Genomic constitutions of three taxa of Hystrix Moench, H. patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata, were examined by meiotic pairing behavior and genomic in-situ hybridization. Meiotic pairing in hybrids of H. patula x Pseudoroegneria spicata (St), H. patula x Elymus wawawaiensis (StH), H. patula x H. duthiei ssp. longearistata, H. patula x Psathyrostachys huashanica (Ns(h)), H. duthiei ssp. duthiei x Psa. huashanica, H. duthiei ssp. longearistata x Psa. huashanica, Leymus multicaulis (NsXm) x H. duthiei ssp. longearistata averaged 6.53, 12.83, 1.32, 0.29, 5.18, 5.11 and 10.47 bivalents per cell, respectively. The results indicate that H. patula has the StH genome and H. duthiei ssp. duthiei and H. duthiei ssp. longearistata have the NsXm genome. Results of genomic in-situ hybridization analysis strongly supported the chromosome pairing data; therefore it is concluded that the type species of Hystrix, H. patula, should be included in Elymus, and that H. duthiei ssp. duthiei and H. duthiei ssp. longearistata should be transferred to Leymus.
Resumo:
Homogeneous DNA hybridization assay based on the luminescence resonance energy transfer (LRET) from a new luminescence terbium chelate, N,N,N-1,N-1-[2,6-bis(3'-aminomethyl-1'-pyrazolyl)-4-phenylpyridine]tetrakis(acetic acid) (BPTA)-Tb3+ (lambda(ex) = 325 nm and lambda(em) = 545 nm) to an organic dye, Cy3 (A,. = 548 nm and A,. = 565 nm), has been developed. In the system, two DNA probes whose sequences are complementary to the two different consecutive sequences of a target DNA are used; one of the probes is labeled with the Tb3+ chelate at the T-end, and the other is with Cy3 at the 5'-end. Labeling of the Tb3+ chelate is accomplished via the linkage of a biotin-labeled DNA probe with the Tb3+ chelate-labeled streptavidin. Strong sensitized emission of Cy3 was observed upon excitation of the Tb3+ chelate at 325 run, when the two probe DNAs were hybridized with the target DNA. The sensitivity of the assay was very high compared with those of the previous homogeneous-format assays using the conventional organic dyes; the detection limit of the present assay is about 30 pM of the target DNA strand.