86 resultados para Higher order interior point method
Resumo:
Starting from nonhydrostatic Boussinesq approximation equations, a general method is introduced to deduce the dispersion relationships. A comparative investigation is performed on inertia-gravity wave with horizontal lengths of 100, 10 and 1 km. These are examined using the second-order central difference scheme and the fourth-order compact difference scheme on vertical grids that are currently available from the perspectives of frequency, horizontal and vertical component of group velocity. These findings are compared to analytical solutions. The obtained results suggest that whether for the second-order central difference scheme or for the fourth-order compact difference scheme, Charny-Phillips and Lorenz ( L) grids are suitable for studying waves at the above-mentioned horizontal scales; the Lorenz time-staggered and Charny-Phillips time staggered (CPTS) grids are applicable only to the horizontal scales of less than 10 km, and N grid ( unstaggered grid) is unsuitable for simulating waves at any horizontal scale. Furthermore, by using fourth-order compact difference scheme with higher difference precision, the errors of frequency and group velocity in horizontal and vertical directions produced on all vertical grids in describing the waves with horizontal lengths of 1, 10 and 100 km cannot inevitably be decreased. So in developing a numerical model, the higher-order finite difference scheme, like fourth-order compact difference scheme, should be avoided as much as possible, typically on L and CPTS grids, since it will not only take many efforts to design program but also make the calculated group velocity in horizontal and vertical directions even worse in accuracy.
Resumo:
With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in 3D exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which keeps the ability of finite-differenc method in dealing with laterally varing media and inherits the predominance of the phase-screen method in stablility and efficiency. In this thesis, the accuracy of the FFD operator is highly improved by using simulated annealing algorithm. This method takes the extrapolation step and band width into account, which is more suitable to various band width and discrete scale than the commonely-used optimized method based on velocity contrast alone. In this thesis, the FFD method is extended to viscoacoustic modeling. Based on one-way wave equation, the presented method is implemented in frequency domain; thus, it is more efficient than two-way methods, and is more convenient than time domain methods in handling attenuation and dispersion effects. The proposed method can handle large velocity contrast and has a high efficiency, which is helpful to further research on earth absorption and seismic resolution. Starting from the frequency dispersion of the acoustic VTI wave equation, this thesis extends the FFD migration method to the acoustic VTI media. Compared with the convetional FFD method, the presented method has a similar computational efficiency, and keeps the abilities of dealing with large velocity contrasts and steep dips. The numerical experiments based on the SEG salt model show that the presented method is a practical migration method for complex acoustical VTI media, because it can handle both large velocity contrasts and large anisotropy variations, and its accuracy is relatively high even in strong anisotropic media. In 3D case, the two-way splitting technique of FFD operator causes artificial azimuthal anisotropy. These artifacts become apparent with increasing dip angles and velocity contrasts, which prevent the application of the FFD method in 3D complex media. The current methods proposed to reduce the azimuthal anisotropy significantly increase the computational cost. In this thesis, the alternating-direction-implicit plus interpolation scheme is incorporated into the 3D FFD method to reduce the azimuthal anisotropy. By subtly utilizing the Fourier based scheme of the FFD method, the improved fast algorithm takes approximately no extra computation time. The resulting operator keeps both the accuracy and the efficiency of the FFD method, which is helpful to the inhancements of both the accuracy and the efficiency for prestack depth migration. The general comparison is presented between the FFD operator and the generalized-screen operator, which is valuable to choose the suitable method in practice. The percentage relative error curves and migration impulse responses show that the generalized-screen operator is much sensiutive to the velocity contrasts than the FFD operator. The FFD operator can handle various velocity contrasts, while the generalized-screen operator can only handle some range of the velocity contrasts. Both in large and weak velocity contrasts, the higher order term of the generalized-screen operator has little effect on improving accuracy. The FFD operator is more suitable to large velocity contrasts, while the generalized-screen operator is more suitable to middle velocity contrasts. Both the one-way implicit finite-difference migration and the two-way explicit finite-differenc modeling have been implemented, and then they are compared with the corresponding FFD methods respectively. This work gives a reference to the choosen of proper method. The FFD migration is illustrated to be more attractive in accuracy, efficiency and frequency dispertion than the widely-used implicit finite-difference migration. The FFD modeling can handle relatively coarse grids than the commonly-used explicit finite-differenc modeling, thus it is much faster in 3D modeling, especially for large-scale complex media.
Resumo:
Seismic exploration is the main method of seeking oil and gas. With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in seismic exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which has obtained good effect. However, in complex media with wider angles, the effect of FFD method is not satisfactory. Based on the FFD operator, we extend the two coefficients to be optimized to four coefficients, then optimize them globally using simulated annealing algorithm. Our optimization method select the solution of one-way wave equation as the objective function. Except the velocity contrast, we consider the effects of both frequency and depth interval. The proposed method can improve the angle of FFD method without additional computation time, which can reach 75° in complex media with large lateral velocity contrasts and wider propagation angles. In this thesis, combinating the FFD method and alternative-direction-implicit plus interpolation(ADIPI) method, we obtain 3D FFD with higher accuracy. On the premise of keeping the efficiency of the FFD method, this method not only removes the azimuthal anisotropy but also optimizes the FFD mehod, which is helpful to 3D seismic exploration. We use the multi-parameter global optimization method to optimize the high order term of FFD method. Using lower-order equation to obtain the approximation effect of higher-order equation, not only decreases the computational cost result from higher-order term, but also obviously improves the accuracy of FFD method. We compare the FFD, SAFFD(multi-parameter simulated annealing globally optimized FFD), PFFD, phase-shift method(PS), globally optimized FFD (GOFFD), and higher-order term optimized FFD method. The theoretical analyses and the impulse responses demonstrate that higher-order term optimized FFD method significantly extends the accurate propagation angle of the FFD method, which is useful to complex media with wider propagation angles.
Resumo:
By seismic tomography, interesting results have been achieved not only in the research of the geosphere with a large scale but also in the exploration of resources and projects with a small scale since 80'. Compared with traditional inversion methods, seismic tomography can offer more and detailed information about subsurface and has been being paid attention by more and more geophysicists. Since inversion based on forward modeling, we have studied and improved the methods to calculate seismic traveltimes and raypaths in isotropic and anisotropic media, and applied the improved forward methods to traveltime tomography. There are three main kinds of methods to calculate seismic traveltime field and its ray path distribution, which are ray-tracing theory, eikonal equation by the finite-difference and minimum traveltime tree algorithm. In ray tracing, five methods are introduced in the paper, including analytic ray tracing, ray shooting, ray bending, grid ray tracing and rectangle grid ray perturbation with three points. Finite-difference solution of eikonal equation is very efficient in calculation of seismic first-break, but is awkward in calculation of reflection traveltimes. We have put forward a idea to calculate traveltimes of reflected waves using a combining way of eikonal equation method and other one in order to improve its capability of dealing with reflection waves. The minimum traveltime tree algorithm has been studied with emphases. Three improved algorithms are put forward on the basis of basic algorithm of the minimum traveltime tree. The first improved algorithm is called raypath tracing backward minimum traveltime algorithm, in which not only wavelets from the current source but also wavelets from upper source points are all calculated. The algorithm can obviously improve the speed of calculating traveltimes and raypaths in layered or blocked homogeneous media and keep good accuracy. The second improved algorithm is raypath key point minimum traveltime algorithm in which traveltimes and raypaths are calculated with a view of key points of raypaths (key points of raypths mean the pivotal points which determine raypaths). The raypath key point method is developed on the basis of the first improved algorithm, and has better applicability. For example, it is very efficient even for inhomogeneous media. Another improved algorithm, double grid minimum traveltime tree algorithm, bases upon raypath key point scheme, in which a model is divided with two kinds of grids so that the unnecessary calculation can be left out. Violent undulation of curved interface often results in the phenomenon that there are no reflection points on some parts of interfaces where there should be. One efficacious scheme that curved interfaces are divided into segments, and these segments are treated respectively is presented to solve the problem. In addition, the approximation to interfaces with discrete grids leads to large errors in calculation of traveltimes and raypaths. Noting the point, we have thought a new method to remove the negative effect of mesh and to improve calculation accuracy by correcting the traveltimes with a little of additional calculation, and obtained better results.
Resumo:
How to create a new method to solve the problem or reduce the influence of that the result of the seismic waves scattering nonlinear inversion is not uniqueness is a main purpose of this research work in the paper. On the background of research into the seismic inversion, new progress of the nonlinear inversion is introduced at the first chapter in this paper. Especially, the development, basic theories and assumptions on some major theories of seismic inversion are analyzed, discussed and summarized in mathematics and physics. Also, the problems faced by the mathematical basis of investigations of the seismic inversion are discussed, and inverse questions of strongly seismic scattering due to strong heterogeneous media in the Earth interior are analyzed and viewed. What the kernel of paper is that gathers all our attention making a new nonlinear inversion method of seismic scattering. The paper provides a theory and method of how to introduce the fixed-point theory into the nonlinear seismic scattering inversion and how to obtain the solution, and gives the actually method to create a serials of contractive mappings of velocity parameter's in the mapping space of wave. Therefore, the results testify the existence of fixed point of velocity parameter and give the method the find it. Further, the paper proves the conclusion that the value obtained by taking the fixed point of velocity parameter into wave equation is the fixed point of the wave of the contractive mapping. Thence, the fixed point is the global minima since the stabilities quality of the fixed point. Based on the new theory, in the chapter three, many inverse results are obtained in the numerical value test. By analysis the results one could find a basic facts that all the results, which are inversed by the different initial model, are tended to the true value in theoretical true model. In other words, the new method mostly eliminates the non-uniqueness that which is existed in seismic waves scattering nonlinear inversion in degree. But, since the test results are quite finite now, more test is need here to positive our theory. As a new theoretical method, it must be existed many weaken in it. The chapter four points out all the questions which is bother us. We hope more people to join us to solve the problem together.
Resumo:
The topic of this study is about the propagation features of elastic waves in the anisotropic and nonlinear media by numerical methods with high accuracy and stability. The main achievements of this paper are as followings: Firstly, basing on the third order elastic energy formula, principle of energy conservation and circumvolved matrix method, we firstly reported the equations of non-linear elastic waves with two dimensions and three components in VTI media. Secondly, several conclusions about some numerical methods have been obtained in this paper. Namely, the minimum suitable sample stepth in space is about 1/8-1/12 of the main wavelength in order to distinctly reduce the numerical dispersion resulted from the numerical mehtod, at the same time, the higher order conventional finite difference (CFD) schemes will give little contribution to avoid the numerical solutions error accumulating with time. To get the similar accuracy with the fourth order center finite difference method, the half truncation length of SFFT should be no less than 7. The FDFCT method can present with the numerical solutions without obvious dispersion when the paprameters of FCT is suitable (we think they should be in the scope from 0.0001 to 0.07). Fortunately, the NADM method not only can reported us with the higher order accuracy solutions (higher than that of the fourth order finite difference method and lower than that of the sixth order finite difference method), but also can distinctly reduce the numerical dispersion. Thirdly, basing on the numerial and theoretical analysis, we reported such nonlinear response accumulating with time as waveform aberration, harmonic generation and resonant peak shift shown by the propagation of one- and two-dimensional non-linear elasticwaves in this paper. And then, we drew the conclusion that these nonlinear responses are controlled by the product between nonlinear strength (SN) and the amplitude of the source. At last, the modified FDFCT numerical method presented by this paper is used to model the two-dimensional non-linear elastic waves propagating in VTI media. Subsequently, the wavelet analysis and polarization are adopted to investigate and understand the numerical results. And then, we found the following principles (attention: the nonlinear strength presented by this paper is weak, the thickness of the -nonlinear media is thin (200m), the initial energy of the source is weak and the anisotropy of the media is weak too): The non-linear response shown by the elastic waves in VTI media is anisotropic too; The instantaneous main frequency sections of seismic records resulted from the media with a non-linear layer have about 1/4 to 1/2 changes of the initial main frequency of source with that resulted from the media without non-linear layer; The responses shown by the elasic waves about the anisotropy and nonlinearity have obvious mutual reformation, namely, the non-linear response will be stronger in some directions because of the anisotropy and the anisotropic strength shown by the elastic waves will be stronger when the media is nonlinear.
Resumo:
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.
Resumo:
The dynamic buckling of viscoelastic plates with large deflection is investigated in this paper by using chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle. in order to obtain accurate computation results, the nonlinear integro-differential dynamic equation is changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equations are performed by using the fourth-order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.
Resumo:
A new hardening law of the strain gradient theory is proposed in this paper, which retains the essential structure of the incremental version of conventional J(2) deformation theory and obeys thermodynamic restrictions. The key feature of the new proposal is that the term of strain gradient plasticity is represented as an internal variable to increase the tangent modulus. This feature which is in contrast to several proposed theories, allows the problem of incremental equilibrium equations to be stated without higher-order stress, higher-order strain rates or extra boundary conditions. The general idea is presented and compared with the theory given by Fleck and Hutchinson (Adv. in Appl. Mech. (1997) 295). The new hardening law is demonstrated by two experimental tests i.e. thin wire torsion and ultra-thin beam bending tests. The present theoretical results agree well with the experiment results.
Resumo:
In the present research, microstructures of the surface-nanocrystalline Al alloy material are observed and measured based on the transmission electron microscopy (TEM) technique, and the corresponding mechanical behaviors are investigated experimentally and theoretically. In the experimental research, the nanoindentation test method is used, and the load and microhardness curves are measured, which strongly depend on the grain size and grain size nonuniformity. Two kinds of the nanoindentation test methods are adopted: the randomly selected loading point method and the continuous stiffness method. In the theoretical modeling, based on the microstructure characteristics of the surface-nanocrystalline Al alloy material, a dislocation pile-up model considering the grain size effect and based on the Mott theory is presented and used. The hardness-indent depth curves are predicted and modeled.
Resumo:
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventional J_2 deformation theory No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory Two typical crack Problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-I K-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, the J-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases.
Resumo:
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.
Resumo:
A computer-controlled procedure has been developed for automatic measurement of the crack opening stress S-op during fatigue tests. A crack opening displacement gauge (GOD meter) is used to obtain digital data on the load versus COD curves. Three methods for deriving S-op from the data sets are compared: (1) a slope method, (2) a tangent lines intersecting method, and (3) a tangent point method. The effect of the position of the COD meter with respect to the crack tip on S-op is studied in tests of 2024-T3 specimens. Results of crack growth and S-op are presented for CA loading with an overload, and with an overload followed by an underload.
Resumo:
The variational approach to the closure problem of turbulence theory, proposed in an earlier article [Phys. Fluids 26, 2098 (1983); 27, 2229 (1984)], is extended to evaluate the flatness factor, which indicates the degree of intermittency of turbulence. Since the flatness factor is related to the fourth moment of a turbulent velocity field, the corresponding higher-order terms in the perturbation solution of the Liouville equation have to be considered. Most closure methods discard these higher-order terms and fail to explain the intermittency phenomenon. The computed flatness factor of the idealized model of infinite isotropic turbulence ranges from 9 to 15 and has the same order of magnitude as the experimental data of real turbulent flows. The intermittency phenomenon does not necessarily negate the Kolmogorov k−5/3 inertial range spectrum. The Kolmogorov k−5/3 law and the high degree of intermittency can coexist as two consistent consequences of the closure theory of turbulence. The Kolmogorov 1941 theory [J. Fluid Mech. 62, 305 (1974)] cannot be disqualified merely because the energy dissipation rate fluctuates.
Resumo:
本书收录关于力学领域的论文301篇。内容包括:回顾20世纪力学在中国的发展,描绘了2000年中国和世界在力学各主要领域的发展现状;展望力学在21世纪的发展方向,探论新世纪中可能面临的新的重大力学等问题。
前言 | 白以龙;杨卫; | ||||||
力学学科《学科发展与优先领域战略研究报告》 | |||||||
世纪之交对力学的回顾、展望和想象 | 白以龙; | ||||||
计算流体力学中发展物理分析的几个问题 | 张涵信;李沁;宗文刚;张来平; | ||||||
非对称Riccati方程基于本征解的分析解 | 钟万勰; | ||||||
实验固体力学近几年的概况 | 伍小平; | ||||||
HIGHER-ORDER COHESIVE ELASTICITY THEORIES OF FRACTURE | Anna Vainchtein; | ||||||
疲劳短裂纹群体损伤随机特征研究 | 洪友士;郑亮;乔宇; | ||||||
半浮区热毛细对流及其不稳定性机理 | 胡文瑞;唐泽眉; | ||||||
ZONAL AND CORRELATION ANALYSIS IN SWEPT SHOCK/BOUNDARY LAYER INTERACTIONS | 邓学蓥; | ||||||
经典约束系统动力学的研究进展 | 梅凤翔; | ||||||
复杂系统的非线性动力学问题 | 陆启韶; | ||||||
时滞受控系统动力学研究进展 | 胡海岩;王在华; | ||||||
力学与航天器工程 | 马兴瑞;苟兴宇;周志成; | ||||||
采矿工程中的力学问题与分析 | 谢和平; | ||||||
CHALLENGING PROBLEMS IN FAILURE ANALYSIS OF DUAL-PHASE MATERIALS: CYCLIC MICRO-PLASTICITY AND SMALL FATIGUE CRACK TIP BEHAVIOR | |||||||
力学与国防科技 | 周丰峻; | ||||||
流体力学和气动热弹性力学新一代反命题的研究 | 刘高联; | ||||||
含灰气体近壁区流动及传热增强机制分析 | 王柏懿;戚隆溪;王超;江先金; | ||||||
三维定常、二维非定常分离模式及准则研究 | 吕志咏; |