113 resultados para Henríquez Ureña
Resumo:
Low temperature heat capacities of N-(p-methylphenyl)-N'-(2-pyridyl)urea were determined by adiabatic calorimetry method in the temperature range from 80 to 370 K. It was found that there was not any heat anomaly in this temperature region. Based on the experimental data, some thermodynamic function results were obtained. Thermal stability and decomposition characteristics analysis of N-(p-methylphenyl)-N'-(2-pyridyl)urea were carried out by DSC and TG. The results indicated that N-(p-methylphenyl)-N'-(2-pyridyl)urea started to melt at ca. 426 K (153degreesC) and the melting peak located at 447.01 K (173.86degreesC). The melting enthalpy was 204.445 kJ mol(-1) (899.6 J g(-1)). The decomposition peak of N-(p-methylphenyl)-N'-(2-pyridyl)urea was found at 499.26 K (226.11degreesC) from DSC curve. This result was similar with that from TG and DTG experiment, in which the mass loss peak was determined as 500.4 K (227.2degreesC).
Resumo:
Urea bridged organic-inorganic hybrid mesoporous SiO2 materials (U-BSQMs) were synthesized through a sol-gel procedure by co-condensation of bis(triethoxysilyl propyl) urea (BSPU) under basic conditions using cetyltrimethylammonium bromide (CTAB) as organic template. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the mesoporous structure of the sample. Fourier-transform infrared spectroscopy (FT-IR), solid state CP-MAS NMR spectroscopy of Si-29 (Si-29, CP-MAS NMR) and C-13 (C-13 CP NMR) indicated that most of the Si-C bonds are unbroken during the synthesis process.
Resumo:
This paper presented a new approach for preparing a new type of slow-release membrane-encapsulated urea fertilizer with starch-g-PLLA as biodegradable carrier materials. By solution-casting and washing rapidly with water the urea was individually encapsulated within the starch matrix modified by L-lactide through in situ graft-copolymerization.
Resumo:
A urea-based bis-silylated bipyridine ligand derived from 4,4'-diamino-2,2'-bipyridine has been prepared. Organic-inorganic hybrid materials with a high loading of lanthanide 2,2-bipyridine moieties were obtained by using the silylated bipyridine as the only siloxane network precursor in the presence of lanthanide ions (or lanthanide complexes). The in-situ formation of lanthanide complexes from lanthanide ions and the silylated bipyridine during the sol-gel processing was confirmed by the luminescence behavior of the obtained hybrid materials and that of the corresponding pure lanthanide complex [Ln(bpy)(2)Cl-3 center dot 2H(2)O].
Resumo:
A novel and quantitative study on structure-property relationships has been carried out in urea crystal, based on the dielectric theory of complex crystals and the modified Levine bond charge model, mainly from the chemical bond viewpoint. For the first time, it was treated like this, and the bond parameters and linear and nonlinear characteristics of constituent chemical bonds were presented quantitatively. The theoretical result agrees satisfactorily with the experimental datum and can reasonably explain the nonlinear origin of urea crystal, that is, the C-N bond in the conjugated system of bonds O double left arrow C<--N-H. At the same time, the novel method should be a useful tool toward the future development of the search for new nonlinear optical (NLO) materials in the organic crystal field.
Resumo:
The changes of the synchronous fluorescence spectra and the electrochemical behaviour of cytochrome c with the urea concentration are studied. It has been found that with the increase of urea concentration, there occur sequentially the deaggregation of cytochrome c molecules, the increase of exposure extent of the heme group to the solvent, the disruption of Fe-S bond of the heme group and the change in the electrochemical behaviour of cytochrome c. It is suggested that the reason why the electrochemical reaction of cytochrome c is irreversible is that cytochrome c molecules exist in the concentrated solution as oligomers which are electrochemically inactive.
Resumo:
The electrochemical identification of the urea denaturation of horse heart cytochrome c in bulk solution at the 4,4'-dithiodipyridine-modified gold electrode is reported. The results are similar to the three-step transitions of equilibrium studies (Myer et al., Biochemistry, 19 (1980) 199) of urea denaturation of cytochrome c in bulk solution. This method permits a clear resolution of which of the three steps of urea denaturation is electrochemically related. In addition, by analysing the effects of urea on the structural forms of cytochrome c and on the solution properties, as well as the cyclic voltammetric responses of the protein, the individual forms of the urea denaturation of cytochrome c can be understood. The results reflect the superposition of protein denaturation on the electrode surface and in solution.
Resumo:
Penicillium herquei isolate GA4 was isolated from the infected Conchocelis of Porphyra yezoensis. A large-scale fermentation using yeast extract sucrose medium and repeated chromatography afforded a new symmetrical urea derivative, hualyzin (1). The structure was determined by detailed NMR spectroscopic investigations and MS fragmentation analysis.
Resumo:
Stable isotopes of N provide a new approach to the study of algal production in the ocean, yet knowledge of the isotope fractionation (epsilon) in various oceanic regimes is lacking. Here we report large and rapid changes in isotope composition (delta(15)N) of 2 coastal diatoms and 2 clones (open and coastal) of a coccolithophore grown in the simultaneous presence of nitrate, ammonium and urea under varying conditions of N availability (i.e. N-sufficiency and N-starvation followed by N-resupply) and hence different physiological states, During N-sufficiency, the delta(15)N of particulate organic N (PON) was well reproduced, using a model derived from Rayleigh distillation theory, with constant epsilon similar to that for growth on each individual N source. However, following N-resupply, the variations in delta(15)N(PON) could be well explained only in the case of the open ocean Emiliania huxleyi, with epsilon similar to N-sufficient conditions. It was concluded that the mechanism of isotope fractionation changed rapidly with N availability for the 3 coastal clones. However, in the case of E. huxleyi isolated from the Subarctic Pacific Ocean, no evidence of a change in mechanism was found, suggesting that perhaps open ocean species can quickly recover from N-depleted conditions.