97 resultados para Helmholtz Equation
Resumo:
The stationary two-dimensional (x, z) near wakes behind a flat-based projectile which moves at a constant mesothermal speed (V∞) along a z-axis in a rarefied, fully ionized, plasma is studied using the wave model previously proposed by one of the authors (VCL). One-fluid theory is used to depict the free expansion of ambient plasma into the vacuum produced behind a fast-moving projectile. This nonstationary, one-dimensional (x, t) flow which is approximated by the K-dV equation can be transformed, through substitution, t=z/V∞, into a stationary two-dimensional (x, z) near wake flow seen by an observer moving with the body velocity (V∞). The initial value problem of the K-dV equation in (x, t) variables is solved by a specially devised numerical method. Comparisons of the present numerical solution for the asymptotically small and large times with available analytical solutions are made and found in satisfactory agreements.
Resumo:
The starting process of two-dimensional nozzle flows has been simulated with Euler, laminar and k - g two-equation turbulence Navier-Stokes equations. The flow solver is based on a combination of LUSGS subiteration implicit method and five spatial discretized schemes, which are Roe, HLLE, MHLLE upwind schemes and AUSM+, AUSMPW schemes. In the paper, special attention is for the flow differences of the nozzle starting process obtained from different governing equations and different schemes. Two nozzle flows, previously investigated experimentally and numerically by other researchers, are chosen as our examples. The calculated results indicate the carbuncle phenomenon and unphysical oscillations appear more or less near a wall or behind strong shock wave except using HLLE scheme, and these unphysical phenomena become more seriously with the increase of Mach number. Comparing the turbulence calculation, inviscid solution cannot simulate the wall flow separation and the laminar solution shows some different flow characteristics in the regions of flow separation and near wall.
A Semi-Empirical Equation of Penetration Depth on Concrete Target Impacted by Ogive-Nose Projectiles
Resumo:
In this paper, the penetration process of ogive-nose projectiles into the semi-infinite concrete target is investigated by the dimensional analysis method and FEM simulation. With the dimensional analysis, main non-dimensional parameters which control the penetration depth are obtained with some reasonable hypothesis. Then, a new semi-empirical equation is present based on the original work of Forrestal et al., has only two non-dimensional combined variables with definite physical meanings. To verify this equation, prediction results are compared with experiments in a wide variation region of velocity. Then, a commercial FEM code, LS-DYNA, is used to simulate the complex penetration process, that also show the novel semi-empirical equation is reasonable for determining the penetration depth in a concrete target.
Resumo:
A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.
Resumo:
The convective--diffusion equation is of primary importance in such fields as fluid dynamics and heat transfer hi the numerical methods solving the convective-diffusion equation, the finite volume method can use conveniently diversified grids (structured and unstructured grids) and is suitable for very complex geometry The disadvantage of FV methods compared to the finite difference method is that FV-methods of order higher than second are more difficult to develop in three-dimensional cases. The second-order central scheme (2cs) offers a good compromise among accuracy, simplicity and efficiency, however, it will produce oscillatory solutions when the grid Reynolds numbers are large and then very fine grids are required to obtain accurate solution. The simplest first-order upwind (IUW) scheme satisfies the convective boundedness criteria, however. Its numerical diffusion is large. The power-law scheme, QMCK and second-order upwind (2UW) schemes are also often used in some commercial codes. Their numerical accurate are roughly consistent with that of ZCS. Therefore, it is meaningful to offer higher-accurate three point FV scheme. In this paper, the numerical-value perturbational method suggested by Zhi Gao is used to develop an upwind and mixed FV scheme using any higher-order interpolation and second-order integration approximations, which is called perturbational finite volume (PFV) scheme. The PFV scheme uses the least nodes similar to the standard three-point schemes, namely, the number of the nodes needed equals to unity plus the face-number of the control volume. For instanc6, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D problems, 2~Dand 3-D flow model equations. Comparing with other standard three-point schemes, The PFV scheme has much smaller numerical diffusion than the first-order upwind (IUW) scheme, its numerical accuracy are also higher than the second-order central scheme (2CS), the power-law scheme (PLS), the QUICK scheme and the second-order upwind(ZUW) scheme.
Resumo:
A relatively simple transform from an arbitrary solution of the paraxial wave equation to the corresponding exact solution of the Helmholtz wave equation is derived in the condition that the evanescent waves are ignored and is used to study the corrections to the paraxial approximation of an arbitrary free-propagation beam. Specifically, the general lowest-order correction field is given in a very simple form and is proved to be exactly consistent with the perturbation method developed by Lax et nl. [Phys. Rev. A 11, 1365 (1975)]. Some special examples, such as the lowest-order correction to the paraxial approximation of a fundamental Gaussian beam whose waist plane has a parallel shin from the z = 0 plane, are presented. (C) 1998 Optical Society of America.
Resumo:
New exact solutions of the (2 + 1)-dimensional double sine-Gordon equation are studied by introducing the modified mapping relations between the cubic nonlinear Klein-Gordon system and double sine-Gordon equation. Two arbitrary functions are included into the Jacobi elliptic function solutions. New doubly periodic wave solutions are obtained and displayed graphically by proper selections of the arbitrary functions.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.
Resumo:
Quantum measurement of a solid-state qubit by a mesoscopic detector is of fundamental interest in quantum physics and an essential issue in quantum computing. In this work, by employing a unified quantum master equation approach constructed in our recent publications, we study the measurement-induced relaxation and dephasing of the coupled-quantum-dot states measured by a quantum-point contact. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. As a result, our theory is applicable to measurement at arbitrary voltage and temperature. Both numerical and analytical results for the qubit relaxation and dephasing are carried out, and important features are highlighted in concern with their possible relevance to future experiments.
Resumo:
For quantum transport through mesoscopic systems, a quantum master-equation approach is developed in terms of compact expressions for the transport current and the reduced density matrix of the system. The present work is an extension of Gurvitz's approach for quantum transport and quantum measurement, namely, to finite temperature and arbitrary bias voltage. Our derivation starts from a second-order cumulant expansion of the tunneling Hamiltonian; then follows the conditional average over the electrode reservoir states. As a consequence, in the usual weak-tunneling regime, the established formalism is applicable for a wide range of transport problems. The validity of the formalism and its convenience in application are well illustrated by a number of examples.
Resumo:
An exact quantum master equation formalism is constructed for the efficient evaluation of quantum non-Markovian dissipation beyond the weak system-bath interaction regime in the presence of time-dependent external field. A novel truncation scheme is further proposed and compared with other approaches to close the resulting hierarchically coupled equations of motion. The interplay between system-bath interaction strength, non-Markovian property, and required level of hierarchy is also demonstrated with the aid of simple spin-boson systems. (C) 2005 American Institute of Physics.
Resumo:
Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.
Resumo:
Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.