86 resultados para HELICAL ANCHOR
Resumo:
The theoretical model construction of mRNA hairpin structure and single-stranded structure as well as the simulation studies on RNA structure determined by the X-ray crystal diffraction and nuclear magnetic resonance revealed that in translation, after mRNA being unfolded into single-stranded structure, its topological configuration was closely correlative with the original hairpin structure. The conformational features of single-stranded mRNA appeared as helical regions alternating with curly regions to different extents, which might exert the influence on the folding of nascent polypeptide by various regulating effects including different translational rates.
Resumo:
The lipase genes of Yarrowia lipolytica, LIPY7 and LIPY8, fused with FLO-flocculation domain sequence from Saccharomyces cerevisiae at their N-termini, were expressed in Pichia pastoris KM71. Following the induction with methanol, the recombinant proteins were displayed on the cell surface of P. pastoris, as confirmed by the confocal laser scanning microscopy. The LipY7p and LipY8p were anchored on P. pastoris via the flocculation functional domain of Flo 1 p. The surface-displayed lipases were characterized for their application as the whole-cell biocatalyst. These lipases can also be cleaved off from their anchor by enterokinase treatment to yield functionally active proteins in the supernatant offering an alternative purification method for LipY7p and LipY8p. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
We present radio images of NRAO 530 on scales ranging from pc to kpc. The observations include the EVN at 5 GHz, the VLBA at 1.6, 8.6 and 15 GHz, the MERLIN at 1.6 and 5 GHz, and the VLA at 5, 8.4, 15, 22, and 43 GHz. The VLBI images show a core-jet structure with an oscillating trajectory on a scale of about 30 mas north of the strongest compact component (core). Superluminal motions are detected in five of the jet components with apparent velocities in the range of 13.6 to 25.2c. A new component is detected at 15 GHz with the VLBA observations, which appears to be associated with the outburst in 2002. Significant polarized emission is detected around the core with the VLBA observations at 15 GHz. Rapid variations of the polarization intensity and angle are found between the epochs in 2002 and 2004. On the kpc-scale, a distant component (labelled as WL) located 11 aresec west (PA=-86 degrees) of the core is detected beyond the core-jet structure which extended to several hundreds of mas in the north-west direction (-50 degrees). A significant emission between the core-jet structure and the WL is revealed. A clump of diffuse emission (labelled EL, 12 arcsec long) at PA 70 degrees to the core, is also detected in the VLA observations, suggesting the presence of double lobes in the source. The core component shows a flat spectrum, while the distant components WL and EL have steep spectra. The steep spectra of the distant components and the detection of the arched emission suggest that the distant components are lobes or hot-spots powered by the core of NRAO 530. The morphologies from pc- to kpc-scales and the bending of jets are investigated. The observed radio morphology from pc to kcp appears to favor the model in which precession or wobbling of the nuclear disk drives the helical motion of the radio plasma and produces the S-shaped structure on kpc scale.
Resumo:
The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes No252-254 were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a Ca-48 beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.
Resumo:
A bar on the Brazos River near Calvert, Texas, has been analyzed in order to determine the geologic meaning of certain grain size parameters and to study the behavior of the size fractions with transport. The bar consists of a strongly bimodal mixture of pebble gravel and medium to fine sand; there is a lack of material in the range of 0.5 to 2 mm, because the source does not supply particles of this size. The size distributions of the two modes, which were established in the parent deposits, are nearly invariant over the bar because the present environment of deposition only affects the relative proportions of the two modes, not the grain size properties of the modes themselves. Two proportions are most common; the sediment either contains no gravel or else contains about 60% gravel. Three sediment types with characteristic bedding features occur on the bar in constant stratigraphic order, with the coarsest at the base. Statistical analysis of the data is based on a series of grain size parameters modified from those of Inman (1952) to provide a more detailed coverage of non-normal size curves. Unimodal sediments have nearly normal curves as defined by their skewness and kurtosis. Non-normal kurtosis and skewness values are held to be the identifying characteristics of bimodal sediments even where such modes are not evident in frequency curves. The relative proportions of each mode define a systematic series of changes in numerical properties; mean size, standard deviation and skewness are shown to be linked in a helical trend, which is believed to be applicable to many other sedimentary suites. The equations of the helix may be characteristic of certain environments. Kurtosis values show rhythmic pulsations along the helix and are diagnostic of two-generation sediments.
Resumo:
Through tuning the length of flexible bis(triazole) ligands and different metal ion coordination geometries, four Wells-Dawson polyoxoanion-based hybrid compounds, [Cu-6(btp)(3)(P2W18O62)] center dot 3H(2)O (1) (btp = 1,3-bis(1,2,4-triazol-1-yl)propane), [Cu-6(btb)(3)((P2W18O62) center dot 2H(2)O (2), [Cu-3(btb)(6)(P2W18O62)] center dot 6H(2)O (btb = 1,4-bis(1,2,4-triazol-1-yl)butane) (3), and [Cu-3(btx)(5.5)((P2W18O62) center dot 4H(2)O (btx = 1,6-bis(1,2,4-triazol-1-yl)hexane) (4), were synthesized and structurally characterized. in compound 1, the metal-organic motif exhibits a ladder-like chain, which is further fused by the ennead-dentate [P2W18O62](6-) anions to construct a 3D structure. In compound 2, the metal-organic motif exhibits an interesting Cu-btb grid layer, and the ennead-dentate polyoxoanions are sandwiched by two Cu-btb layers to construct a 3D structure
Resumo:
Unusual hierarchical stacked superstructures of cubic beta-In2S3 were fabricated via a facile hydrothermal process in the presence of a surfactant cetyltrimethylammonium bromide CTAB; the 3D superstructures were developed by helical propagation of surface steps from microflakes of 10-20 nm thickness.
Resumo:
In this paper, we have described a chiral binaphthyl-based fluorescent organogel. Very interestingly, similar to sonocrystallisation of organics, ultrasound can promote the gelation while it cannot occur spontaneously at relatively high temperature or low concentration. The fluorescence enhancement of the gel obtained via ultrasound irradiation is observed. In solution there exist rapid dynamic equilibria between (S)-1 oligomers. The association interactions both between gelator molecules and between solvent and gelator molecules could together effect the helical growth of distorted (S)-1 nanocrystals.
Resumo:
A fascinating 3D polycatenane-like metal-organic framework with two kinds of helical chains was reported, in which the helical chains exhibit multiple interweaving modes based on the unusual 2D -> 2D parallel -> 3D parallel interpenetration.
Resumo:
Self-assembled behavior of T-shaped rod-coil block copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. Compared with rod-coil diblock copolymers with the anchor point positioned at one end, the copolymers with the anchor point at the middle of the rod exhibit significantly different phase behaviors. When the rod volume fraction is low, the steric hindrance of the lateral coils prevents the rods stacking into strip or micelle as that in rod-coil diblock copolymers. The competition between interfacial energy and entropy results in the formation of lamellar structures and the increasing thickness of the lamellar layer with increasing rod volume fraction.
Resumo:
An easy surface-modified method has been developed to link -NH2 groups to the TiO2 colloidal spheres with nanoporous surface (f-TiO2). It was found that the as-prepared f-TiO2 is positively charged in neutral conditions and could act as an electrostatic anchor for nanosructures with opposite charge, Furthermore, platinum nanoparticles (Pt NPs) are successfully assembled on the f-TiO2 mainly via electrostatic interaction to fabricate a new kind of Pt NPs/TiO2 hybrid nanomaterial (f-TiO2-Pt NPs). The morphology, structure, and composition of the hybrids were characterized by the means of diverse techniques such as transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and Raman spectra. Electrochemical experiments indicate the electrode modified with f-TiO2-Pt NPs shows prominent electrocatalytic activity toward the oxidation of hydrogen peroxide.
Resumo:
Triplex helical formation has been the focus of considerable interest because of possible applications in developing new molecular biology tools as well as therapeutic agents and the possible relevance of H-DNA structures in biology system. We report here that a small-molecule anticancer agent, coralyne, has binding preference to the less stable protonated triplex d(C+-T)(6):d(A-G)(6).d(C-T)(6) over duplex d(A-G)(6).d(C-T)(6) and shows different spectral and electrochemical characteristics when binding to triplex and duplex DNA, indicating that electrochemical technique can detect the less stable protonated triplex formation.
Resumo:
Well-ordered single, double/four parallel, three/four-strands helical chains, and five-strand helical chain with a single atom chain at the center of Si nanowires (NWs) inside single-walled carbon nanotubes (Si-n@SWCNTs) are obtained by means of molecular dynamics. On the basis of these optimized structures, the structural evolution of Si-n@SWCNTs subjected to axial stress at low temperature is also investigated. Interestingly, the double parallel chains depart at the center and transform into two perpendicular parts, the helical shell transformed into chain, and the strand number of Si NWs increases during the stress load. Through analyzis of pair correlation function (PCF), the density of states (DOS), and the z-axis polarized absorption spectra of Si-n@SWCNTs, we find that the behavior of Si-n@SWCNTs under stress strongly depends on SWCNTs' symmetry, diameter, as well as the shape of Nws, which provide valuable information for potential application in high pressure cases such as seabed cable.
Resumo:
The major protein component of the amyloid deposition in Alzheimer's disease is a 39-43 residue peptide, amyloid beta (A beta). A beta is toxic to neurons, although the mechanism of neurodegeneration is uncertain. Evidence exists for non-B DNA conformation in the hippocampus of Alzheimer's disease brains, and A beta was reportedly able to transform DNA conformation in vitro. In this study, we found that DNA conformation was altered in the presence of A beta, and A beta induced DNA condensation in a time-dependent manner. Furthermore, A beta sheets, serving as condensation nuclei, were crucial for DNA condensation, and Cu2+ and Zn2+ ions inhibited A beta sheet-induced DNA condensation. Our results suggest DNA condensation as a mechanism of A beta toxicity.
Resumo:
The self-assembly of diblock copolymer mixtures (A-b-B/A-b-C or A-b-B/B-b-C mixtures) subjected to cylindrical confinement (two-dimensional confinement) was investigated using a Monte Carlo method. In this study, the boundary surfaces were configured to attract blocks A but repel blocks B and C. Relative to the structures of the individual components, the self-assembled structures of mixtures of the diblock copolymers were more complex and interesting. Under cylindrical confinement, with varying cylinder diameters and interaction energies between the boundary surfaces and the blocks, we observed a variety of interesting morphologies. Upon decreasing the cylinder's diameter, the self-assembled structures of the A(15)B(15)/A(15)C(15) mixtures changed from double-helix/cylinder structures (blocks B and C formed double helices, whereas blocks A formed the outer barrel and inner core) to stacked disk/cylinder structures (blocks B and C formed the stacked disk core, blocks A formed the outer cylindrical barrel), whereas the self-assembled structures of the A(15)B(7)/B7C15 mixtures changed from concentric cylindrical barrel structures to screw/cylinder structures (blocks C formed an inside core winding with helical stripes, whereas blocks A and B formed the outer cylindrical barrels) and then finally to the stacked disk/cylinder structures.