33 resultados para GnRH-agonist


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mental dependence, characterized by craving and impulsive seeking behavior, is the matter of intensive study in the field of drug addiction. The mesolimbic dopamine system has been suggested to play an important role in rewarding of drugs and relapse. Although chronic drug use can induce neuroadaptations of the mesolimbic system and changes of drug reinforcement, these mechanisms cannot fully account for the craving and the compulsive drug-using behavior of addicts. Acknowledging the reinforcement effects of drugs, most previous studies have studied the impact of environmental cues and conditioned learning on addiction behavior, often using established classical or operant conditioning model. These studies, however, paid little attention to the role of cognitive control and emotion in addiction. These mental factors that are believed to have an important influence on conditioned learning. The medial prefrontal cortex (mPFC) has close anatomic and functional connections with the mesolimbic dopamine system. A number of the cognitive neurological studies demonstrate that mPFC is involved in motivation, emotional regulation, monitoring of responses and other executive functions. Thus we speculated that the function of abnormality in mPFC following chronic drug use would cause related to the abnormal behavior in addicts including impulse and emotional changes. In the present study of a series of experiments, we used functional magnetic resonance imaging to examine the hemodynamic response of the mPFC and related circuits to various cognitive and emotional stimuli in heroin addicts and to explore the underlying dopamine neuromechnism by microinjection of tool drugs into the mPFC in laboratory animals. In the first experiment, we found that heroin patients, relative to the normal controls, took a much shorter time and committed more errors in completing the more demanding of cognitive regulation in the reverse condition of the task, while the neural activity in anterior cingulate cortex (ACC) was attenuated. In the second experiment, the scores of the heroin patients in self-rating depression scale (SDS) and Self-rating anxiety scale (SAS) were significantly higher than the normal controls and they rated the negative pictures more aversive than the normal controls. Being congruent with the behavioral results, hemodynamic response to negative pictures showed significant difference between the two groups in bilateral ventral mPFC (VMPFC), amygdala, and right thalamus. The VMPFC of patients showed increased activation than normal controls, whereas activation in the amygdala of patients was weaker than that in normal subjects. Our third experiment showed that microinjection of D1 receptor agonist SKF38393 into the mPFC of rats decreased hyperactivity, which was induced by morphine injection, in contrast, D1 receptor antagonist SCH23390 increased the hyperactivity, These findings suggest: (1) The behavior and neural activity in ACC of addicts changed in chronic drug users. Their impulsive behavior might result from the abnormal neural activity in the mPFC especially the ACC. (2) Heroine patients were more depress and anxiety than normal controls. The dysfunction of the mPFC---amygdala circuit of heroine addicts might be related to the abnormal emotion response. (3) Dopamine in the mPFC has an inhibitory effect on morphine induced behavior. The hyperactivity induced by chronic morphine was reduced by dopamine increase with D1 receptor agonist, confirm the first experiment that the neuroadaption of mPFC system induced by chronic morphine administration appears to be the substrate the impulse behavior of drug users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prenatal morphine exposure affects neural development of fetus by impairing learning and memory, and increasing susceptibility to morphine abuse. Because nervous systems have different developmental characteristics during different developmental stages, administration of morphine at different stages also has different effects on learning, memory, and susceptibility to morphine. Due to the precise developmental processes of neurotransmitter systems in chick embryo’s brain, and unique superiority of chick embryo model, the purpose of the present studies was to explore critical periods correlated to the memory impairment and the increasing susceptibility to morphine, via one-trial passive avoidance and conditioned place preference as behavior models. Then the possible roles of mu and delta opioid receptors as the possible mechanism were analyzed. Experiment 1 showed that injecting low dose of morphine (1 mg/kg) during the period embryonic 5 to 8 significantly impaired the function of learning and memory, worse than any other periods of the same treatment. Experiment 2 showed that injecting low dose of morphine during the period embryonic 17 to 20 significantly increased the susceptibility to morphine in the new-born chicks. The affected chicks acquired the morphine conditioned place preference more quickly, and maintained it much longer. Experiment 3 showed that during E5-8, injecting delta receptor antagonist naltrindole reversed the learning and memory impairment caused by morphine while delta receptor agonist DPDPE impaired learning and partial memory function. On the other hand, mu opioid receptors had little effect. As for E17-20, given naloxonazine can reverse the increases of susceptibility to morphine, and the mu receptor agonist DAGO cause the increases of susceptibility to morphine. Delta receptors have no effect. The above results demonstrated that prenatal morphine expousure at different developmental periods of chick embryo caused different influences on memory and susceptibility to morphine. That is, E5-8 is the critical period correlate to memory impairment; and E17-20 is the critical period correlate to susceptibility to morphine. Delta receptors were critical in learning and memory impairment while mu receptors in susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene regulation is required for activity-dependent changes in synaptic plasticity and remodeling. The metabotropic glutamate receptors (mGluRs) contribute to different brain functions, including learning/memory, mental disorders, drug addiction, and persistent pain in the CNS. We found that Gp I mGluRs activate PLCß through Gq and then lead to activation of several calcium-dependent signaling pathways, including ERK, which play an important role in gene transcription. These findings support a calcium-dependent role for Gq in release of Calcium and activation of calcium-stimulated adenylyl cyclases I in activity-dependent transcription in response to application of group I metabotropic glutamate receptors agonist and may provide insights into group I mGluRs-dependent synaptic plasticity through MAP kinases signaling. Moreover, the present study investigated the transcription-dependent changes of Arc in response to the activation of group I mGluRs and suggested the central role of ERK1/2 in group I mGluR-mediated Arc transcription. Further, we selected APP-interaction protein FE65 to investigate the mechanism of transcription-related process in synaptic plasticity. FE65 is expressed predominantly in the brain, and interacts with the C-terminal domain of β-amyloid precursor protein (APP). We examined hippocampus-dependent memory and in vivo long-term potentiation (LTP) at the CA1 synapses with the isoform-specific FE65 knock-out (p97FE65-/-) mice. p97FE65 knock-out mice showed impaired short-term memory for both TDPA and CFC when tested 10min after training, which is transcription-independent. Consistently, at the Schaffer collateral-CA1 synapses, p97FE65 knock-out mice showed defective early phase LTP. These results demonstrate novel roles of FE65 in synaptic plasticity, acquisition, and retention for certain forms of memory formation.