58 resultados para Glass fiber industry
Resumo:
We report development of a new fiber doped with PbSe quantum dots for nonlinear optical applications. PbSe quantum dots related absorption peaks were obtained at 1021, 1093 and 1351 nm. The resonant optical nonlinearity and attenuation at 1500 nm were measured to be 9.4 × 10−16 m2/W and 0.01 dB/m, respectively. The emission around 1540 nm was observed upon near resonant pumping at 1064 nm.
Resumo:
In this paper, the dynamic behaviors of several kinds of high strength fibers, including Kevlar, UHMPE, glass fibers, carbon fibers etc., are investigated experimentally, with a Split Hopkinson Tension Bar (SHTB). The effect of strain rate on the modulus, strength, failure strain and failure characteristics of fibers, under impact loading, is analyzed with the relative stress vs. strain curves. At the same time, the mechanism about the rate dependence of mechanical behaviors of various fibers is discussed based on the understanding on the microstructures and deformation models of materials. Some comments are also presented on the decentralization of experimental results, and a new method called traveling wave method is presented to increase the experimental accuracy. Research results obtained in this paper will benefit to understand the energy absorption and to build up the constitutive law of protective materials reinforced by high strength fibers.
Resumo:
Anodic bonding of Pyrex glass/Al/Si is an important bonding technique in micro/nanoelectromechanical systems (MEMS/NEMS) industry. The anodic bonding of Pyrex 7740 glass/Aluminum film/Silicon is completed at the temperature from 300 degrees C to 375 degrees C with a bonding voltage between 150 V and 450 V. The fractal patterns are formed in the intermediate Al thin film. This pattern has the fractal dimension of the typical two-dimensional diffusion-limited aggregation (2D DLA) process, and the fractal dimension is around 1.7. The fractal patterns consist of Al and Si crystalline grains, and their occurrences are due to the limited diffusion, aggregation, and crystallization of Si and Al atoms in the intermediate Al layers. The formation of the fractal pattern is helpful to enhance the bonding strength between the Pyrex 7740 glass and the aluminum thin film coated on the crystal silicon substrates.
Resumo:
Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.
Resumo:
Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.
Resumo:
Broadband near-infrared (IR) luminescence in transparent alkali gallium silicate glass-ceramics containing N2+-doped beta-Ga2O3 nanocrystals was observed. This broadband emission could be attributed to the T-3(2g) (F-3) -> (3)A(2g) (F-3) transition of octahedral Ni2+ ions in glass-ceramics. The full width at half-maximum (FWHM) of the near-IR luminescence and fluorescent lifetime of the glass-ceramic doped with 0.10 mol% NiO were 260 nm and similar to 1220 mu s, respectively. It is expected that transparent Ni2+-doped beta-Ga2O3 glass-ceramics with this broad near-IR emission and long fluorescent lifetime have potential applications as super-broadband optical amplification media.
Resumo:
A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
This letter reports the ultrabroadband infrared luminescence from 1000- to 1700-nm wavelength range and demonstrate optical amplification at the second optical communication window in a novel bismuth-doped germanosilicate glass. The full-width at half-maximum of the luminescence is about 300 mn and the optical gain is larger than 1.37 within the wavelength region from 1272 to 1348 nm with pump power 0.97 W. This material could be useful to fabricate ultrabroadband optical fiber amplifiers.
Resumo:
Dy3+ doped oxyfluoride silicate glass was prepared and its optical absorption, 1.3 mu m emission, and upconversion luminescence properties were studied. Furthermore, the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] intensity parameters, oscillator strengths, spontaneous transition probability, fluorescence branching ratio and radiative lifetime were calculated by Judd-Ofelt theory, while stimulated emission cross section of H-6(9/2)+F-6(11/2)-> H-6(15/2) transition was calculated by McCumber theory [Phys. Rev. A. 134, 299 (1964)]. According to the obtained Judd-Ofelt intensity parameters Omega(2)=2.69x10(-20) cm(2), Omega(4)=1.64x10(-20) cm(2), and Omega(6)=1.64x10(-20) cm(2), the radiative lifetime was calculated to be 810 mu s for 1.3 mu m emission, whose full width at half maximum and sigma(e) were 115 nm and 2.21x10(-20)cm(2), respectively. In addition, near infrared to visible upconversion luminescence was observed and evaluated. The results suggest that Dy3+ doped oxyfluoride silicate glass can be used as potential host material for developing broadband optical amplifiers and laser applications.
Resumo:
Transparent Ni2+-doped MgO-Al2O3-TiO2-SiO2 glass ceramics were prepared, and the optical properties of Ni2+-doped glass ceramics were investigated. Broadband emission centered at 1320 nm was observed by 980 nm excitation. The longer wavelength luminescence compared with Ni2+-doped Li2O-Ga2O3-SiO2 glass ceramics is ascribed to the low crystal field hold by Ni2+ in MgO-Al2O3-TiO2-SiO2 glass ceramics. The change in optical signals at the telecommunication bands with or without 980 nm excitation was also measured when the seed beam passes through the bulk gain host.(C) 2007 American Institute of Physics.
Resumo:
In this paper, we present the broadband optical amplification in bismuth-doped germanate glass, at the second telecommunication window when excited with 808 nm and 980 nm laser diodes, respectively. The amplification range is from 1272 nm to 1348 nm wavelength, which is within the O-band of silica fiber communication. This bismuth-doped glass can be used as ultra broadband amplification material for wavelength-division-multiplexing (WDM) at the second telecommunication window.
Resumo:
We demonstrate broadband optical amplification at 1.3 mu m in silicate glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals with 980 nm excitation for the first time. The optical gain efficiency is calculated to be about 0.283 cm(-1) when the excitation power is 1.12 W. The optical gain shows similar wavelength dependence to luminescence properties. (C) 2007 Optical Society of America.
Resumo:
Er3+ -doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(1) (t = 2,4,6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 2.95 x 10(-20), Omega(4) = 0-91 X 10(-20), and Omega(6) = 0.36 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) --> I-4(15/2), S-4(3/2) I-4(15/2), and F-4(9/2) --> I-4(15/2) respectively were observed. The upconversion mechanisms are discussed based oil the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (C) 2004 Published by Elsevier B.V.