41 resultados para Gestural interfaces
Resumo:
The differences between the interdiffusion characteristics of Ag/YBa2Cu3O7-x and Al/YBa2Cu3O7-x contact interfaces have been revealed by secondary ion mass spectrometry (SIMS). The different electrical properties of Ag/YBa2Cu3O7-x and YBa2Cu3O7-x films after high temperature treatment are well understood by the SIMS results.
Resumo:
The in-plane optical anisotropy of several GaAs/AlGaAs quantum well samples with different well widths has been measured at room temperature by reflectance-difference spectroscopy (RDS). The RDS line shapes are found to be similar in all the samples examined here, which dominantly consist of two peak-like signals corresponding to 1HH-->1E and 1LH-->1E transition. As the well width is decreased, or the 1 ML InAs layer is inserted at one interface, the intensity of the anisotropy increases quickly. Our detail analysis shows that the anisotropy mainly arises from the anisotropic interface roughness. The results demonstrate that the RDS technique is sensitive to the interface structures.
Resumo:
"Fluidic leakage" caused by vacuum force at the reversible sealing poly(dimethylsiloxane) (PDMS) interfaces was converted to one useable avenue, which led to formation of highly ordered surfactant microdroplets functionalized with ionic liquids (ILs). Vacuum force is the prerequisite to lead constant microsolutions to diffuse to the PDMS interfaces. Imidazolium ions of ILs rendered structural rearrangement of the surfactant aggregates and the ordered droplets formation.
Resumo:
Both the behavior and the general key factors for assembling flexible SWNT films at the water/oil interface were investigated; the electron transfer, one of the most fundamental chemical processes, at the SWNT-sandwiched water/oil interface was also firstly illustrated using scanning electrochemical microscopy.
Resumo:
The interfaces formed between copper-hexadecafluoro-phthalocyanine (F16CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T) were examined using photoemission and inverse photoemission spectroscopy. It is observed that in F16CuPc/BP2T the heterojunction is characterized by band bending in both materials, while in BP2T/F16CuPc the band bending is confined in BP2T only. The combination of the band bending and finite Debye lengths provides an explanation to the observed ambipolar behavior of the organic thin film transistors based on such heterojunctions.
Resumo:
Facilitated alkali metal ion (M+= Li+, Na+, K+, Rb+, and Cs+) transfers across the micro- and nano-water/1,2-dichloroethane (W/DCE) interfaces supported at the tips of micro- and nanopipets by dibenzo-18-crown-6 (DB18C6) have been investigated systematically using cyclic voltammetry. The theory developed by Matsuda et al. was applied to estimate the association constants of DB18C6 and M+ in the DCE phase based on the experimental voltammetric results. The kinetic measurements for alkali metal ion transfer across the W/DCE interface facilitated by DB18C6 were conducted using nanopipets or-submicropipets, and the standard rate constants (k(0)) were evaluated by analysis of the experimental voltammetric data. They increase in the following order: k(Cs+)(0) < k(Li+)(0) < k(Rb+)(0) < k(Na+)(0) < k(K+)(0), which is in accordance with their association constants except Cs+ and Li+.
Resumo:
Impedance study was carried out for the interfaces between lithium, polyaniline (PAn), lithium-doped MnO2 and modified poly(ethylene oxide) (PEO) electrolyte under various' conditions. The interfacial charge-transfer resistances R(ct) on PEO/PAn, R(ct) on PEO/LiMn2O4 increase with depth-of-discharge and decrease after the charge of the cell containing modified PEO as electrolyte. The charge-transfer resistance R(ct) on PEO/PAn is higher than R(ct) on PEO/LiMn2O4 under the same condition, since inserted species and mechanism are different for both cases. In the case of PAn, an additional charge-transfer resistance might be related to the electronic conductivity change in discharge/charge potential range, as it was evident from a voltammetry curve. With increasing cycle numbers, the charge-transfer resistance increases gradually. The impedance results also have shown that at low frequency the diffusion control is dominant in the process of the charge and discharge of Li/PEO/PAn or Li/PEO/LiMn2O4 cell. The diffusion coefficients have been calculated from impedance data.
Resumo:
Lidocaine transfer across the water/1,2-dichloroethane and the water/nitrobenzene interfaces has been investigated by chronopotentiometry with linear current scanning and cyclic voltammetry. The irreversible hydrolysis occurring in the phase transfer of dicaine at the water/nitrobenzene interface is discussed.
Resumo:
Identification of protein interaction interfaces is very important for understanding the molecular mechanisms underlying biological phenomena. Here, we present a novel method for predicting protein interaction interfaces from sequences by using PAM matrix (PIFPAM). Sequence alignments for interacting proteins were constructed and parsed into segments using sliding windows. By calculating distance matrix for each segment, the correlation coefficients between segments were estimated. The interaction interfaces were predicted by extracting highly correlated segment pairs from the correlation map. The predictions achieved an accuracy 0.41-0.71 for eight intraprotein interaction examples, and 0.07-0.60 for four interprotein interaction examples. Compared with three previously published methods, PIFPAM predicted more contacting site pairs for 11 out of the 12 example proteins, and predicted at least 34% more contacting site pairs for eight proteins of them. The factors affecting the predictions were also analyzed. Since PIFPAM uses only the alignments of the two interacting proteins as input, it is especially useful when no three-dimensional protein structure data are available.