55 resultados para Germanic peoples


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hybrid method of large eddy simulation (LES) and the Lighthill analogy is being developed to compute the sound radiated from turbulent flows. The results obtained from the hybrid method are often contaminated by the absence of small scales in LES, since the energy level of sound is much smaller than that of turbulent flows. Previous researches investigate the effects of subgrid sacle (SGS) eddies on the frequency spectra of sound radiated by isotropic turbulence and suggest a SGS noise model to represent the SGS contributions to the frequency spectra. Their investigations are conducted in physical space and are unavoidably influenced by boundary conditions. In this paper, we propose to perform such calculations in Fourier space so that the effects of boundary conditions can be correctly treated. Posteriori tests are carried out to investigate the SGS contribution to the sound. The results obtained recover the -7/2 law within certain wave-number ranges, but under-estimate the amplitudes of the frequency spectra. The reason for the underestimation is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent application of large-eddy simulation (LES) to particle-laden turbulence requires that the LES with a subgrid scale (SGS) model could accurately predict particle distributions. Usually, a SGS particle model is used to recover the small-scale structures of velocity fields. In this study, we propose a rescaling technique to recover the effects of small-scale motions on the preferential concentration of inertial particles. The technique is used to simulate particle distribution in isotropic turbulence by LES and produce consistent results with direct numerical simulation (DNS). Key words: particle distribution, particle-laden turbulence, large-eddy simulation, subgrid scale model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Taylor series expansion method is used to analytically calculate the Eulerian and Lagrangian time correlations in turbulent shear flows. The short-time behaviors of those correlation functions can be obtained from the series expansions. Especially, the propagation velocity and sweeping velocity in the elliptic model of space-time correlation are analytically calculated and further simplified using the sweeping hypothesis and straining hypothesis. These two characteristic velocities mainly determine the space-time correlations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrophobic surface benefits for drag reduction. Min and Kim[1] do the first Direct Numerical Simulation on drag reduction in turbulent channel flow. And Fukagata and Kasagi[2] make some theoretical analysis based on Dean[3]'s formula and some observations in the DNS results. Using their theory, they conclude that drag reduction is possible in large Reynolds number. Both Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are performed in our research. How the LES behaving in the turbulent channel flow with hydrophobic surface is examined. Original Smagorinsky model and its Dynamical model are used in LES. The slip velocities predicted by LES using Dynamical model are in good agreement with DNS as shown in the Figure. Although the percentage of drag reduction predicted by LES shows some discrepancies, it is in the error limit for industrial flow. First order and second order moments of LES are also examined and compared with DNS's results. The first-order moments is calculated well by LES. But there are some discrepancies of second-order moments between LES and DNS. [GRAPHICS]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on high-order compact upwind scheme, a high-order shock-fitting finite difference scheme is studied to simulate the generation of boundary layer disturbance waves due to free-stream waves. Both steady and unsteady flow solutions of the receptivity problem are obtained by resolving the full Navier-Stokes equations. The interactions of bow-shock and free-stream disturbance are researched. Direct numerical simulation (DNS) of receptivity to free-stream disturbances for blunt cone hypersonic boundary layers is performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flow around moving boundary is ubiquitous in engineering applications. To increse the efficienly of the algorithm to handle moving boundaries is still a major challenge in Computational Fluid Dynamics (CFD). The Chimera grid method is one type of method to handle moving boundaries. A concept of domain de-composition has been proposed in this paper. In this method, sub-domains are meshed independently and governing equations are also solved separately on them. The Chimera grid method was originally used only on structured (curvilinear) meshes. However, in a problem which involves both moving boundary and complex geometry, the number of sub-domains required in a traditional (structured) Chimera method becomes fairly large. Thus the time required in the interior boundary locating, link-building and data exchanging also increases. The use of unstructured Chimera grid can reduce the time consumption significantly by the reduction of domain(block) number. Generally speaking, unstructured Chimera grid method has not been developed. In this paper, a well-known pressure correction scheme - SIMPLEC is modified and implemented on unstructured Chimera mesh. A new interpolation scheme regarding the pressure correction is proposed to prevent the possible decoupling of pressure. A moving-mesh finite volume approach is implemented in an inertial reference frame. This approach is then used to compute incompressible flow around a rotating circular and elliptic cylinder. These numerical examples demonstrate the capability of the proposed scheme in handling moving boundaries. The numerical results are in good agreement with other experimental and computational data in literature. The method proposed in this paper can be efficiently applied to more challenge cases such as free-falling objects or heavy particles in fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morison's equation is used for estimating internal solitary wave-induced forces exerted on SPAR and semi-submersible platforms. And the results we got have also been compared to ocean surface wave loading. It is shown that Morison's equation is an appropriate approach to estimate internal wave loading even for SPAR and semi-submersible platforms, and the internal solitary wave load on floating platforms is comparable to surface wave counterpart. Moreover, the effects of the layers with different thickness on internal solitary wave force are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When designing deep ocean structures, it is necessary to estimate the effects of internal waves on the platform and auxiliary parts such as tension leg, riser and mooring lines. Up to now, only a few studies are concerned with the internal wave velocity fields. By using the most representative two-layer model, we have analyzed the behavior of velocity field induced by interfacial wave in the present paper. We find that there may exist velocity shear of fluid particles in the upper and lower layers so that any structures in the ocean are subjected to shear force nearby the interface. In the meantime, the magnitude of velocity for long internal wave appears spatially uniform in the respective layer although they still decay exponentially. Finally, the temporal variation for Stokes and solitary waves are shown to be of periodical and pulse type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coarse Particle sedimentation is studied by using an algorithm with no adjustable parameters based on stokesian dynamics. Only inter-particle interactions of hydrodynamic force and gravity are considered. The sedimentation of a simple cubic array of spheres is used to verify the computational results. The scaling and parallelism with OpenMP of the method are presented. Random suspension sedimentation is investigated with Mont Carlo simulation. The computational results are shown in good agreement with experimental fitting at the lower computational cost of O(N In N).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slope failure due to rainfall is a common geotechnical problem. The mechanics of rainfall induced landslides involves the interaction of a number of complex hydrologic and geotechnical factors. This study attempts to identify the influence of some of these factors on the stability of soil slope including rainfall intensity, hydraulic conductivity and the strength parameters of soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dynamic 3D pore-scale network model is formulated for investigating the effect of interfacial tension and oil-water viscosity during chemical flooding. The model takes into account both viscous and capillary forces in analyzing the impact of chemical properties on flow behavior or displacement configuration, while the static model with conventional invasion percolation algorithm incorporates the capillary pressure only. From comparisons of simulation results from these models. it indicates that the static pore scale network model can be used successfully when the capillary number is low. With the capillary increases due to the enhancement of water viscosity or decrease of interfacial tension, only the quasi-static and dynamic model can give insight into the displacement mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22(nd) Chinese recoverable satellite. The fluid is R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30mm in length is simultaneously used as heater and thermometer. Only the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. A scale analysis on the Marangoni convection surrounding a bubble in the process of subcooled nucleate pool boiling leads to formulas of the characteristic velocity of the lateral motion and its observability. The predictions consist with the experimental observations. Considering the Marangoni effect, a new qualitative model is proposed to reveal the mechanism underlying the bubble departure processes and a quantitative agreement can also be acquired.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Algal blooms, worsening marine ecosystems and causing great economic loss, have been paid much attention to for a long time. Such environmental factors as light penetration, water temperature, and nutrient concentration are crucial in blooms processes. Among them, only nutrients can be controlled. Therefore, the threshold of nutrients for algal blooms is of great concern. To begin with, a dynamic eutrophication model has been constructed to simulate the algal growth and phosphorus cycling. The model encapsulates the essential biological processes of algal growth and decay, and phosphorus regeneration due to algal decay. The nutrient limitation is based upon commonly used Monod's kinetics. The effects of temperature and phosphorus limitation are particularly addressed. Then, we have endeavored to elucidate the threshold of phosphorus at different temperature for algal blooms. Based on the numerical simulation, the isoquant contours of change rate of alga as shown in the figure are obtained, which obviously demonstrate the threshold of nutrient at an arbitrary reasonable temperature. The larger the change rate is, the more rapidly the alga grows. If the phosphorus concentration at a given temperature remains larger than the threshold the algal biomass may increase monotonically, leading to the algal blooming. With the rising of temperature, the threshold is apparently reduced, which may explain why likely red tide disasters occur in a fine summer day. So, high temperature and sufficient phosphorus supply are the major factors which result in algal growth and blowout of red tide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overview on the onset of thermocapillary oscillatory convection in a floating half zone is provided, and it is a typical subject in the microgravity sciences related to the space materials science, especially the floating zone processing, and also to the microgravity fluid physics. The main interests are focused around the process for onset of oscillatory thermocapillary convection, which is known also as the bifurcation transition from quasi-steady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, such as the Marangoni number, Prandtl number, geometrical parameters, and heat transfer parameters. Recent studies show that, there exists the bifurcation transition from steady and axial symmetric convection to the steady and axial non-symmetric convection before the onset of oscillation in cases of small Prandtl number fluids and in cases of larger Prandtl number fluids of fat liquid bridge with small aspect ratio. The transition process is a strong non-linear process because the velocity deviation has the same order of magnitude as that of an average flow after the onset of oscillation, and unsteady 3-D numerical simulation is suitable to do in depth analysis on strong non-linear process, and leads generally to a better comparison with the experimental results.