172 resultados para Geometry, Plane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity of complex stress functions, the general formulation is presented, and the closed-form solutions to several problems of practical importance are given, which include some published results as the special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For most practically important plane elasticity problems of orthotropic materials, stresses depend on elastic constants through two nondimensional combinations. A spatial rescaling has been found to reduce the orthotropic problems to equivalent problems in materials with cubic symmetry. The latter, under favorable conditions, may be approximated by isotropic materials. Consequently, solutions for orthotropic materials can be constructed approximately from isotropic material solutions or rigorously from cubic ones. The concept is developed to gain insight into the interplay between anisotropy and finite geometry. The inherent simplicity of the solutions allows a variety of technical problems to be addressed efficiently. Included are stress concentration related cracking, effective contraction of orthotropic material specimens, crack deflection onto easy fracture planes, and surface flaw induced delamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, fundamental equations of the plane strain problem based on the 3-dimensional plastic flow theory are presented for a perfectly-plastic solid The complete governing equations for the growing crack problem are developed. The formulae for determining the velocity field are derived.The asymptotic equation consists of the premise equation and the zero-order governing equation. It is proved that the Prandtl centered-fan sector satisfies asymptotic equation but does not meet the needs of hlgher-order governing equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the partial differential equations of hydrodynamics governing the movements in the Earth's mantle of a Newtonian fluid with a pressure- and temperature-dependent viscosity, considering the bilateral symmetry of velocity and temperature distributions at the mid-plane of the plume, an analytical solution of the governing equations near the mid-plane of the plume was found by the method of asymptotic analysis. The vertical distribution of the upward velocity, viscosity and temperature at the mid-plane, and the temperature excess at the centre of the plume above the ambient mantle temperature were then calculated for two sets of Newtonian rheological parameters. The results obtained show that the temperature at the mid-plane and the temperature excess are nearly independent of the rheological parameters. The upward velocity at the mid-plane, however, is strongly dependent on the rheological parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4:2244-2251; Int. J. Multiphase Flow 2000; 26:1583-1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The JTZ model [C. Jung, T. T¶el and E. Ziemniak, Chaos 3, (1993) 555], as a theoretical model of a plane wake behind a circular cylinder in a narrow channel at a moderate Reynolds number, has previously been employed to analyze phenomena of chaotic scattering. It is ex- tended here to describe an open plane wake without the con¯ned nar- row channel by incorporating a double row of shedding vortices into the intermediate and far wake. The extended JTZ model is found in qualitative agreement with both direct numerical simulations and ex- perimental results in describing streamlines and vorticity contours. To further validate its applications to particle transport processes, the in- teraction between small spherical particles and vortices in an extended JTZ model °ow is studied. It is shown that the particle size has signif- icant in°uences on the features of particle trajectories, which have two characteristic patterns: one is rotating around the vortex centers and the other accumulating in the exterior of vortices. Numerical results based on the extended JTZ model are found in qualitative agreement with experimental ones in the normal range of particle sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of a film flowing down an inclined porous layer is considered. The fully developed basic flow is driven by gravitation. A careful linear instability analysis is carried out. We use Darcy's law to describe the porous layer and solve the coupling equations of the fluid and the porous medium rather than the decoupled equations of the one-sided model used in previous works. The eigenvalue problem is solved by means of a Chebyshev collocation method. We compare the instability of the two-sided model with the results of the one-sided model. The result reveals a porous mode instability which is completely neglected in previous works. For a falling film on an inclined porous plane there are three instability modes, i.e., the surface mode, the shear mode, and the porous mode. We also study the influences of the depth ratio d, the Darcy number delta, and the Beavers-Joseph coefficient alpha(BJ) on the instability of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carried out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-critical flow regime; (2) with increasing gap-to-diameter ratio (e (0)/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/f (n) ) has a slight variation for the case of larger values of e (0)/D (e (0)/D > 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylinder between the larger gap-to-diameter ratios (e (0)/D > 0.66) and the smaller ones (e (0)/D < 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of V (r) number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of V (r) and the frequency ratio (f/f (n) ) become larger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the inhibition patterns is important to the stimulated emission depletion (STED) microscopy. Usually, Laguerre-Gaussian (LG) beam and the central zero-intensity patterns created by inserting phase masks in Gaussian beams are used as the erase beam in STED microscopy. Aberration is generated when focusing beams through an interface between the media of the mismatched refractive indices. By use of the vectorial integral, the effects of such aberration on the shape of depletion patterns and the size of fluorescence emission spot in the STED microscopy are studied. Results are presented as a comparison between the aberration-free case and the aberrated cases. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the saturated diffraction efficiency has been optimized by considering the effect of the absorption of the recording light on a crossed-beam grating with 90 degrees recording geometry in Fe:LiNbO3 crystals. The dependence of saturated diffraction efficiency on the doping levels with a known oxidation-reduction state, as well as the dependence of saturated diffraction efficiency on oxidation-reduction state with known doping levels, has been investigated. Two competing effects on the saturated diffraction efficiency were discussed, and the intensity profile of the diffracted beam at the output boundary has also been investigated. The results show that the maximal saturated diffraction efficiency can be obtained in crystals with moderate doping levels and modest oxidation state. An experimental verification is performed and the results are consistent with those of the theoretical calculation.