81 resultados para Geometric mean radius
Resumo:
A novel geometric algorithm for blind image restoration is proposed in this paper, based on High-Dimensional Space Geometrical Informatics (HDSGI) theory. In this algorithm every image is considered as a point, and the location relationship of the points in high-dimensional space, i.e. the intrinsic relationship of images is analyzed. Then geometric technique of "blurring-blurring-deblurring" is adopted to get the deblurring images. Comparing with other existing algorithms like Wiener filter, super resolution image restoration etc., the experimental results show that the proposed algorithm could not only obtain better details of images but also reduces the computational complexity with less computing time. The novel algorithm probably shows a new direction for blind image restoration with promising perspective of applications.
Resumo:
胶体粒子聚集速率常数实验值远低于理论值一直是被普遍关注的问题.聚集速率常数的理论推导是基于粒子的几何半径来考虑的,但决定粒子扩散速率及聚集速率的应该是粒子的流体力学半径(大于几何半径),因而它是使聚集速率常数实验值低于理论值的因素之一.影响流体力学半径的因素很多,其中,带电粒子在溶液中因表面存在双电层,会明显增大流体力学半径,造成聚集速率减慢.而双电层的厚度又随溶液中离子强度的不同而改变.本工作在聚集速率的公式中引入了修正因子,即几何半径与其流体力学半径之比,以修正由于用几何半径代替流体力学半径带来的误差.其中几何半径和流体力学半径可以分别用扫描电镜(SEM)和动态光散射(DLS)来测定.以两种粒径的聚苯乙烯带电微球为例,考察了在不同离子强度下,该误差的大小.结果发现,对于半径为30 nm的微球,用流体力学半径计算的慢聚集速率常数比理论值偏低约8%.该误差随离子强度增加而减少.对于快聚集情况,流体力学半径对聚集速率基本没有影响.