71 resultados para Genome editing
Resumo:
Using a combined computational program. we identified 50 potential microRNAs (miRNAs) in Giardia lamblia. one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs.
Resumo:
Background: Giardia are a group of widespread intestinal protozoan parasites in a number of vertebrates. Much evidence from G. lamblia indicated they might be the most primitive extant eukaryotes. When and how such a group of the earliest branching unicellular eukaryotes developed the ability to successfully parasitize the latest branching higher eukaryotes (vertebrates) is an intriguing question. Gene duplication has long been thought to be the most common mechanism in the production of primary resources for the origin of evolutionary novelties. In order to parse the evolutionary trajectory of Giardia parasitic lifestyle, here we carried out a genome-wide analysis about gene duplication patterns in G. lamblia. Results: Although genomic comparison showed that in G. lamblia the contents of many fundamental biologic pathways are simplified and the whole genome is very compact, in our study 40% of its genes were identified as duplicated genes. Evolutionary distance analyses of these duplicated genes indicated two rounds of large scale duplication events had occurred in G. lamblia genome. Functional annotation of them further showed that the majority of recent duplicated genes are VSPs (Variant-specific Surface Proteins), which are essential for the successful parasitic life of Giardia in hosts. Based on evolutionary comparison with their hosts, it was found that the rapid expansion of VSPs in G. lamblia is consistent with the evolutionary radiation of placental mammals. Conclusions: Based on the genome-wide analysis of duplicated genes in G. lamblia, we found that gene duplication was essential for the origin and evolution of Giardia parasitic lifestyle. The recent expansion of VSPs uniquely occurring in G. lamblia is consistent with the increment of its hosts. Therefore we proposed a hypothesis that the increment of Giradia hosts might be the driving force for the rapid expansion of VSPs.
Resumo:
研究测定了西藏那曲(4,500 m)、云南中甸(3,300 m)、云南德钦(3,300 m)地区3匹藏马线粒体全基因组序列.3个地区的藏马线粒体基因组全长以及结构均与韩国济州岛的马类似,但比瑞典马线粒体基因组短.藏马基因组在DNA序列上的两两相似性达99.3%.通过对线粒体蛋白编码区的分析发现,NADH6基因的蛋白序列在三匹藏马中均表现快速进化的现象.这表明NADH6基因在藏马高原适应进化过程中扮演着重要角色.此外,利用7匹藏马的D-loop区域序列以及与其亲缘关系较近的马的序列首次构建的藏马的系统发育树显示,那曲藏马与中甸、德钦藏马属于不同的分支,且存在较大的遗传多样性,表明藏马可能为多地区起源.
Resumo:
We analyzed n-mers (n=3-8) in the local environment of 8,249,446 human SNPs and compared their distribution with that in the genome reference sequences. The results revealed that the short sequences, which contained at least one CpG dinucleotide, occurred
Resumo:
A genome-wide view of sequence mutability in mice is still limited, although biologists usually assume the same scenario for mice as for humans. In this study, we examined the sequence context in the local environment of 482,528 mouse single nucleotide po
Resumo:
银鲫(CarasiusauratusgibelioBloch)是行天然雌核发育生殖的两性型三倍体鱼类,与普通两性融合生殖鱼类相比,具有独特的育种优势。八十年代以来,异育银鲫、复合四倍体异育银鲫的发现表明,雌核发育卵子不但具有保持自身全部染色体的能力,还能整合异源精子的部分遗传物质或整个基因组,影响雌核发育后代的性状。因此,搞清楚异源基因组的整合机制对于进一步弄清其发育模式以及诱导复合多倍体银鲫均具有十分重要的作用。两性融合发育鱼类的精子入卵后,精核在促精核活化因子的诱导下,可以逐渐解凝并形成雄性原核;而在
Resumo:
Background: Cytochrome P450 monooxygenases play key roles in the metabolism of a wide variety of substrates and they are closely associated with endocellular physiological processes or detoxification metabolism under environmental exposure. To date, however, none has been systematically characterized in the phylum Ciliophora. T. thermophila possess many advantages as a eukaryotic model organism and it exhibits rapid and sensitive responses to xenobiotics, making it an ideal model system to study the evolutionary and functional diversity of the P450 monooxygenase gene family. Results: A total of 44 putative functional cytochrome P450 genes were identified and could be classified into 13 families and 21 sub-families according to standard nomenclature. The characteristics of both the conserved intron-exon organization and scaffold localization of tandem repeats within each P450 family clade suggested that the enlargement of T. thermophila P450 families probably resulted from recent separate small duplication events. Gene expression patterns of all T. thermophila P450s during three important cell physiological stages (vegetative growth, starvation and conjugation) were analyzed based on EST and microarray data, and three main categories of expression patterns were postulated. Evolutionary analysis including codon usage preference, sit-especific selection and gene-expression evolution patterns were investigated and the results indicated remarkable divergences among the T. thermophila P450 genes. Conclusion: The characterization, expression and evolutionary analysis of T. thermophila P450 monooxygenase genes in the current study provides useful information for understanding the characteristics and diversities of the P450 genes in the Ciliophora, and provides the baseline for functional analyses of individual P450 isoforms in this model ciliate species.
Resumo:
A birnavirus strain, Paralichthys olivaceus birnavirus (POBV), was isolated and characterized from cultured flounder in China, and its complete genomic sequence was subsequently determined. The virus could induce cytopathic effects (CPE) in four of seven fish cell lines and was resistant to chloroform, 5-iodo-2'-deoxyuridine, acid and alkaline pH, and heat treatment. Purified virus particles had a typical icosahedral shape, with a diameter of approximately 55-60 nm. The genomic segments A and B of POBV were 3,091 and 2,780 bp in length and shared many of the features of the members of the family Birnaviridae. Segment A contained two partially overlapping ORFs encoding a polyprotein, pVP2-VP4-VP3, and a nonstructural protein, VP5, while segment B had only one ORF encoding for the VP1, a viral RNA-dependent RNA polymerase (RdRp). This is the first report about a birnavirus strain from a new non-salmonid host in China and its complete genome sequence.
Resumo:
The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.
Resumo:
The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S) 22 tRNA genes, and a noncoding control region. We use these data and homologous sequence data from multiple other ostariophysan fishes in a phylogenetic evaluation to test hypothesis pertaining to codon usage pattern of O. bidens mitochondrial protein genes as well as to re-examine the ostariophysan phylogeny. The mitochondrial genome of O. bidens reveals an alternative pattern of vertebrate mitochondrial evolution. For the mitochondrial protein genes of O. bidens, the most frequently used codon generally ends with either A or C, with C preferred over A for most fourfold degenerate codon families; the relative synonymous codon usage of G-ending codons is greatly elevated in all categories. The codon usage pattern of O. bidens mitochondrial protein genes is remarkably different from the general pattern found previously in the relatively closely 9 related zebrafish and most other vertebrate mitochondria. Nucleotide bias at third codon positions is the main cause of codon bias in the mitochondrial protein genes of O. bidens, as it is biased particularly in favor of C over A. Bayesian analysis of 12 concatenated mitochondrial protein sequences for O. bidens and 46 other teleostean taxa supports the monophyly of Cypriniformes and Otophysi and results in a robust estimate of the otophysan phylogeny. (C) 2007 Published by Elsevier B.V.
Resumo:
The unusual allotetraploid form with unequal contribution of chromosome sets was discovered from the gynogenetic offspring of Carassius auratus gibelio stimulated by red common carp sperm. In this study, genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) with 45S rDNA probe are used. The GISH results lead to the identification of species-specific chromosomes, which permits to demonstrate the origin and genome organization in the allotetraploid form. Moreover, chromosome localization of 45S rDNA and co-localizations of 45S rDNA and Cyprinus carpio genomic DNA further confirm that one extra 45S rDNA positive chromosome in the allotetraploid form originates from the paternal haploid genome of C carpio, and other 5 45S rDNA-containing chromosomes are from the maternal genome of Carassius auratus gibelio. And, the correlation between 45 rDNA and the nucleolar organizer regions (NORs) is confirmed by silver nitrate staining. The data provide direct experiment evidence that the allotetraploid actually contains three chromosome sets of Carassius auratus gibelio and one chromosome set of C carpio, and will be a useful genetic material for both basic research and breeding practice. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Sox gene family is found in a broad range of animal taxa and encodes important gene regulatory proteins involved in a variety of developmental processes. We have obtained clones representing the HMG boxes of twelve Sox genes from grass carp (Ctenopharyngodon idella), one of the four major domestic carps in China. The cloned Sox genes belong to group B1, B2 and C. Our analyses show that whereas the human genome contains a single copy of Sox4, Sox11 and Sox14, each of these genes has two co-orthologs in grass carp, and the duplication of Sox4 and Sox11 occurred before the divergence of grass carp and zebrafish, which support the "fish-specific whole-genome duplication" theory. An estimation for the origin of grass carp based on the molecular clock using Sox1, Sox3 and Sox11 genes as markers indicates that grass carp (subfamily Leuciscinae) and zebrafish (subfamily Danioninae) diverged approximately 60 million years ago. The potential uses of Sox genes as markers in revealing the evolutionary history of grass carp are discussed.
Resumo:
The complete sequence of the 16,539 nucleotide mitochondrial genome from the single species of the catfish family Cranoglanididae, the helmet catfish Cranoglanis bouderius, was determined using the long and accurate polymerase chain reaction (LA PCR) method. The nucleotide sequences of C. bouderius mitochondrial DNA have been compared with those of three other catfish species in the same order. The contents of the C. bouderius mitochondrial genome are 13 protein-coding genes, two ribosomal RNA and 22 transfer RNA genes, and a non-coding control region, the gene order of which is identical to that observed in most other vertebrates. Phylogenetic analyses for 13 otophysan fishes were performed using Bayesian method based on the concatenated mtDNA protein-coding gene sequence and the individual protein-coding gene sequence data set. The competing otophysan topologies were then tested by using the approximately unbiased test, the Kishino-Hasegawa test, and the Shimodaira-Hasegawa test. The results show that the grouping ((((Characifonnes, Gymnotiformes), Siluriformes), Cyprinifionnes), outgroup) is the most likely but there is no significant difference between this one and the other alternative hypotheses. In addition, the phylogenetic placement of the family Cranoglanididae among siluriform families was also discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Production of zebrafish by modifying endogenous growth hormone (GH) gene through homologous recombination is described here. We first constructed the targeting vectors pGHT1.7k and pGHT2.8k, which were used for the knockout/knockin of the endogenous GH gene of zebrafish, and injected these two vectors into the embryos of zebrafish. Overall, the rate of targeted integration with the characteristic of germ line transmission in zebrafish was 1.7x10(-6). In one experimental patch, the integrating efficiency of pGHT2.8k was higher than that of pGHT1.7k, but the lethal effect of pGHT2.8k was stronger than that of pGHT1.7k. The clones with the correct integration of target genes were identified by a simple screening procedure based on green fluorescent protein (GFP) and RFP dual selection, which corresponded to homologous recombination and random insertion, respectively. The potential homologous recombination zebrafish was further bred to produce a heterozygous F-1 generation, selected based on the presence of GFP. The potential targeted integration of exogenous GH genes into a zebrafish genome at the P-0 generation was further verified by polymerase chain reaction and Southern blot analysis. Approximately 2.5% of potential founder knockout and knockin zebrafish had the characteristic of germ line transmission. In this study, we developed an efficient method for producing the targeted gene modification in zebrafish for future studies on genetic modifications and gene functions using this model organism.