32 resultados para Generalized impulse response functions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory and approach of the broadband teleseismic body waveform inversion are expatiated in this paper, and the defining the crust structure's methods are developed. Based on the teleseismic P-wave data, the theoretic image of the P-wave radical component is calculated via the convolution of the teleseismic P-wave vertical component and the transform function, and thereby a P-wavefrom inversion method is built. The applied results show the approach effective, stable and its resolution high. The exact and reliable teleseismic P waveforms recorded by CDSN and IRIS and its geodynamics are utilized to obtain China and its vicinage lithospheric transfer functions, this region ithospheric structure is inverted through the inversion of reliable transfer functions, the new knowledge about the deep structure of China and its vicinage is obtained, and the reliable seismological evidence is provided to reveal the geodynamic evolution processes and set up the continental collisional theory. The major studies are as follows: Two important methods to study crustal and upper mantle structure -- body wave travel-time inversion and waveform modeling are reviewed systematically. Based on ray theory, travel-time inversion is characterized by simplicity, crustal and upper mantle velocity model can be obtained by using 1-D travel-time inversion preliminary, which introduces the reference model for studying focal location, focal mechanism, and fine structure of crustal and upper mantle. The large-scale lateral inhomogeneity of crustal and upper mantle can be obtained by three-dimensional t ravel-time seismic tomography. Based on elastic dynamics, through the fitting between theoretical seismogram and observed seismogram, waveform modeling can interpret the detail waveform and further uncover one-dimensional fine structure and lateral variation of crustal and upper mantle, especially the media characteristics of singular zones of ray. Whatever travel-time inversion and waveform modeling is supposed under certain approximate conditions, with respective advantages and disadvantages, and provide convincing structure information for elucidating physical and chemical features and geodynamic processes of crustal and upper mantle. Because the direct wave, surface wave, and refraction wave have lower resolution in investigating seismic velocity transitional zone, which is inadequate to study seismic discontinuities. On the contrary, both the converse and reflected wave, which sample the discontinuities directly, must be carefully picked up from seismogram to constrain the velocity transitional zones. Not only can the converse wave and reflected wave study the crustal structure, but also investigate the upper mantle discontinuities. There are a number of global and regional seismic discontinuities in the crustal and upper mantle, which plays a significant role in understanding physical and chemical properties and geodynamic processes of crustal and upper mantle. The broadband teleseismic P waveform inversion is studied particularly. The teleseismic P waveforms contain a lot of information related to source time function, near-source structure, propagation effect through the mantle, receiver structure, and instrument response, receiver function is isolated form teleseismic P waveform through the vector rotation of horizontal components into ray direction and the deconvolution of vertical component from the radial and tangential components of ground motion, the resulting time series is dominated by local receiver structure effect, and is hardly irrelevant to source and deep mantle effects. Receiver function is horizontal response, which eliminate multiple P wave reflection and retain direct wave and P-S converted waves, and is sensitive to the vertical variation of S wave velocity. Velocity structure beneath a seismic station has different response to radial and vertical component of an accident teleseismic P wave. To avoid the limits caused by a simplified assumption on the vertical response, the receiver function method is mended. In the frequency domain, the transfer function is showed by the ratio of radical response and vertical response of the media to P wave. In the time domain, the radial synthetic waveform can be obtained by the convolution of the transfer function with the vertical wave. In order to overcome the numerical instability, generalized reflection and transmission coefficient matrix method is applied to calculate the synthetic waveform so that all multi-reflection and phase conversion response can be included. A new inversion method, VFSA-LM method, is used in this study, which successfully combines very fast simulated annealing method (VFSA) with damped least square inversion method (LM). Synthetic waveform inversion test confirms its effectiveness and efficiency. Broadband teleseismic P waveform inversion is applied in lithospheric velocity study of China and its vicinage. According to the data of high quality CDSN and IRIS, we obtained an outline map showing the distribution of Asian continental crustal thickness. Based on these results gained, the features of distribution of the crustal thickness and outline of crustal structure under the Asian continent have been analyzed and studied. Finally, this paper advances the principal characteristics of the Asian continental crust. There exist four vast areas of relatively minor variations in the crustal thickness, namely, northern, eastern southern and central areas of Asian crust. As a byproduct, the earthquake location is discussed, Which is a basic issue in seismology. Because of the strong trade-off between the assumed initial time and focal depth and the nonlinear of the inversion problems, this issue is not settled at all. Aimed at the problem, a new earthquake location method named SAMS method is presented, In which, the objective function is the absolute value of the remnants of travel times together with the arrival times and use the Fast Simulated Annealing method is used to inverse. Applied in the Chi-Chi event relocation of Taiwan occurred on Sep 21, 2000, the results show that the SAMS method not only can reduce the effects of the trade-off between the initial time and focal depth, but can get better stability and resolving power. At the end of the paper, the inverse Q filtering method for compensating attenuation and frequency dispersion used in the seismic section of depth domain is discussed. According to the forward and inverse results of synthesized seismic records, our Q filtrating operator of the depth domain is consistent with the seismic laws in the absorbing media, which not only considers the effect of the media absorbing of the waves, but also fits the deformation laws, namely the frequency dispersion of the body wave. Two post stacked profiles about 60KM, a neritic area of China processed, the result shows that after the forward Q filtering of the depth domain, the wide of the wavelet of the middle and deep layers is compressed, the resolution and signal noise ratio are enhanced, and the primary sharp and energy distribution of the profile are retained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mental dependence, characterized by craving and impulsive seeking behavior, is the matter of intensive study in the field of drug addiction. The mesolimbic dopamine system has been suggested to play an important role in rewarding of drugs and relapse. Although chronic drug use can induce neuroadaptations of the mesolimbic system and changes of drug reinforcement, these mechanisms cannot fully account for the craving and the compulsive drug-using behavior of addicts. Acknowledging the reinforcement effects of drugs, most previous studies have studied the impact of environmental cues and conditioned learning on addiction behavior, often using established classical or operant conditioning model. These studies, however, paid little attention to the role of cognitive control and emotion in addiction. These mental factors that are believed to have an important influence on conditioned learning. The medial prefrontal cortex (mPFC) has close anatomic and functional connections with the mesolimbic dopamine system. A number of the cognitive neurological studies demonstrate that mPFC is involved in motivation, emotional regulation, monitoring of responses and other executive functions. Thus we speculated that the function of abnormality in mPFC following chronic drug use would cause related to the abnormal behavior in addicts including impulse and emotional changes. In the present study of a series of experiments, we used functional magnetic resonance imaging to examine the hemodynamic response of the mPFC and related circuits to various cognitive and emotional stimuli in heroin addicts and to explore the underlying dopamine neuromechnism by microinjection of tool drugs into the mPFC in laboratory animals. In the first experiment, we found that heroin patients, relative to the normal controls, took a much shorter time and committed more errors in completing the more demanding of cognitive regulation in the reverse condition of the task, while the neural activity in anterior cingulate cortex (ACC) was attenuated. In the second experiment, the scores of the heroin patients in self-rating depression scale (SDS) and Self-rating anxiety scale (SAS) were significantly higher than the normal controls and they rated the negative pictures more aversive than the normal controls. Being congruent with the behavioral results, hemodynamic response to negative pictures showed significant difference between the two groups in bilateral ventral mPFC (VMPFC), amygdala, and right thalamus. The VMPFC of patients showed increased activation than normal controls, whereas activation in the amygdala of patients was weaker than that in normal subjects. Our third experiment showed that microinjection of D1 receptor agonist SKF38393 into the mPFC of rats decreased hyperactivity, which was induced by morphine injection, in contrast, D1 receptor antagonist SCH23390 increased the hyperactivity, These findings suggest: (1) The behavior and neural activity in ACC of addicts changed in chronic drug users. Their impulsive behavior might result from the abnormal neural activity in the mPFC especially the ACC. (2) Heroine patients were more depress and anxiety than normal controls. The dysfunction of the mPFC---amygdala circuit of heroine addicts might be related to the abnormal emotion response. (3) Dopamine in the mPFC has an inhibitory effect on morphine induced behavior. The hyperactivity induced by chronic morphine was reduced by dopamine increase with D1 receptor agonist, confirm the first experiment that the neuroadaption of mPFC system induced by chronic morphine administration appears to be the substrate the impulse behavior of drug users.