123 resultados para Gas-phase Acidities


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas phase reactions of C-60 and C-70 with the ion system of acetone under chemical ionization conditions have been studied. C-60 and C-70 can react with acetyl and oxonium ions, which come from self-chemical ionization of acetone, to form adduct ions. In addition, C-60 and C-70 can accept protons to produce protonated ions. C-70 is more active in the above reactions than C-60 because of its stronger gas-phase basicity. A sigma-bond between C-60 and an acyl carbon atom can be formed to produce stable acetylated C-60 ions. The above results may be relevant to the acetylation reactions of C-60 in the condensed phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-phase ion-molecular reactions of C-60 and C-70 with the ion system of acetone have been studied in this paper. The ions of protoned and acetylized C-60 and C-70 were formed by the reactions of C-60 and C-70 with some ions which existed in the ion system when mass spectrometer worked on chemical ionization conditions. The reactivity of C-70 is greater than that of C-60. Results of quantum chemical calculation for the adduct ions showed a sigma bond between the acyl carbon atom and C-60 may be Formed. These results will provide some valuable informations on the condense-phase acetylization of C-60.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A radical aromatic substitution resulting in biphenylcarboxylic acid is inferred for the decomposition of benzoyl peroxide from the chemical ionization and collision-induced dissociation mass spectra. The thermolysis of benzoyl peroxide gives rise to a benzoyloxy radical, which undergoes rapid decarboxylation and hydrogen abstraction leading to phenyl radical and benzoic acid, respectively. Attack of the resulting phenyl radical on the benzoic acid results in bipbenylcarboxylic acid. On the other hand, the phenyl radical abstracts a hydrogen atom to yield benzene, which is then subjected to the attack of a benzoyloxy radical, affording phenyl benzoate. This substitution reaction rather than the recombination of benzoyloxy and phenyl radicals is found to be responsible for the formation of phenyl benzoate under the present conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unimolecular Charge separation reactions of the doubly charged ions [C6H4Cl2]2+, [C6H3Cl]2+ produced in the ion source by electron impact from o-, m-, and p-dichloro benzene have been studied using mass analysed ion kinetic energy spectrometry. The values of kinetic energy releases (T) can be calculated from the energy dispersion of product ions. As T essentially reflects the release of coulombic energy, which can be used to calculate the approximate distances R between the two charges immediately before decomposition of the ions. From these data, some structural information about transiton states could be provided. The ECID and CID processes of above doubly charged ions, have also been studied. We found that the CID reactions of (C6H4Cl2)2+ could be used to distinguish three dichloro benzene isomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unimolecular charge separation reactions of the doubly charged ions FeC10H102+, FeC10H theta 2+, FeC10H82+ produced in the ion source by electron impact from ferrocene have been studied using Mass analyzed Ion Kinetic Energy Spectrometry (MIKES) technique. From the values of the kinetic energy releases (T), the intercharge distances (R) of the exploding doubly charged ions in their transition structures have been estimated and some structural informations about the transition states can be obtained. The collision induced reactions of the FeC10H102+ ion with Ar have been studied using MIKES, we postulate a new type of continuing reaction which may be "collisional charge separation induced dissociation".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of CH5O+ from two different reactions which are protonation of CH3OH from the above two pathways possess the same structures, CH3OH2+. The value of kinetic energy release for the metastable decomposition CH2OH3+-> CH2OH+ + H-2 determined from the experiment is in good agreement with that from theoretical calculations. The transition state of above reaction were disscussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collision-Induced Dissociation (CID) or Collision Activation (CA) of ion involves high kinetic energy colliding with neutral gas molecules. In part of the ions, the translational energy is converted into excitation energy, Which may lead to subsequent ion decomposition. CID has developed into an important technique for elucidating the

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas phase partial oxidation of toluene over V/Ti oxide catalysts has been successfully performed in a microchannel reactor, which provides very good mass and heat transfer conditions. With the elimination of hot spots, which are known as the most negative factors for partial oxidation of hydrocarbons, steady and uniform reaction conditions can be achieved in the catalyst bed by using, the microreactor. Since the best performance of the catalysts might be exploited, the selectivity of partial oxidation products of toluene has remarkably increased compared to the traditional packed fixed-bed reactor, even without the bother of modifying the catalysts, diluting the reactants or catalysts with inert contents to avoid hot spots or improve the diffusion and mixing. Furthermore, in virtue of its inherent safety features, when using pure oxygen as oxidant, the reactions were handled safety within the explosion limits in the microreactor. With TiO2 carried V2O5 as catalysts, the total selectivity of benzaldehyde and benzoic acid reaches around 60%, and the toluene conversion is about 10%. The conversion can go up without violent decline of selectivity, unlike most fixed bed reactors. Space time yield of 3.12 kg h(-1) L-1 calculated on the basis of the channel volume has been achieved. The influence of operating conditions has been investigated in detail in the microreactor. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The characterization of air-water two-phase vertical flow in a 12 m flow loop with 1.5 m of vertical section is studied by using electrical resistance tomography (ERT). By applying a fast data collection to a dual-plane ERT sensor and an iterative image reconstruction algorithm, relevant information is gathered for implementation of flow characteristics, particularly for flow regime recognition. A cross-correlation method is also used to interpret the velocity distribution of the gas phase on the cross section. The paper demonstrates that ERT can now be deployed routinely for velocity measurements and this capability will increase as faster measurement systems evolve.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station "MIR" in August 1999. Carbogal and air are used as the liquid and the gas phase, respectively. Bubble, slug, slug-annular transitional, and annular hows are observed. A new region of annular how with lower liquid superficial velocity is discovered, and the region of the slug-annular transitional flow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug-annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase how patterns in the present experiments are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A thermodynamic model for the GaSb-GaCl3 system in a closed quartz ampoule was proposed. The species in the gas phase are GaCl, GaCl3, Sb-4, Sb-2. The partial pressures of these species and total pressure in the ampoule have been calculated. The calculated results indicate that the equilibrium partial pressures of GaCl, GaCl3, Sb4, Sb2 and the total pressure in the ampoule have strong dependence on temperature, free volume inside the closed ampoule and amount of transport agent GaCl3. The total pressure will give strong influence not only on the flow pattern in the ampoule, but also on the uniformity of the epilayer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full-and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.