130 resultados para GAS-TRANSPORT PROPERTIES
Resumo:
The electrical properties of annealed undoped n-type InP are studied by temperature dependent Hall effect (TDH) and current-voltage (I-V) measurements for semiconducting and semi-insulating samples, receptively. Defect band conduction in annealed semiconducting InP can be observed from TDH measurement, which is similar to those of as-grown unintentionally doped InP with low carrier concentration and moderate compensation. The I-V curves of annealed undoped SI InP exhibit ohmic property in the applied field region up to the onset of breakdown. Such a result is different from that of as-grown Fe-doped SI InP which has a nonlinear region in I-V curve explained by the theory of space charge limited current.
Resumo:
The transport properties through a quantum dot are calculated using the recursion method. The results show that the electric fields can move the conductive peaks along the high- and low-energies. The electric field changes the intensity of conductance slightly. Our theoretical results should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Impurity-free single-crystalline antimony telluride hexagonal nanoplates (see figure) are synthesized by a facile and quick hydrothermal treatment without any organic additives or templates. The inherent crystal structure is the driving force for the growth of these Sb2Te3 hexagonal nanoplates. Films of these nanoplates shows p-type behavior, and exhibit a promisingly high Seebeck coefficient of 425 mu V K-1 at room temperature.
Resumo:
A bulk alloy which consists of the single icosahedral quasicrystalline phase (I-phase) in Ti45Zr35Ni17CU3 alloy has been fabricated by mechanical alloying and subsequent pulse discharge sintering technique. Crystallographic structure analyses show that the bulk alloy is an I-phase. The transport properties of the bulk alloy are examined, and the results show that the room-temperature thermal conductivity is 5.347 W K-(1) m(-1), and the electrical conductivity decreases with increasing the temperature from 300 to 450K. The Seebeck coefficient is negative at the temperature range from 300 to 360K, and changes to positive from 370 to 450K. Hall effect measurements indicate the bulk I-phase alloy has a high carrier concentration. The specific heat capacity increases when the temperature increases from 280 to 324 K.
Resumo:
A new fluorinated diamine monomer, [1,4-bis(4-amino-3-trifluoromethylphenoxy)benzene (2)], and a known isomeric analog 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (3) were synthesized. A series of organosoluble polyimides Ia-d and IIa were prepared from the diamines (2, 3) and dianhydrides (a-d) by a high-temperature one-step method. The effects of the trifluoromethyl substituents on the properties of polyimides were evaluated through the study of their soluble, thermal, optical, and gas permeability properties. Polyimides (Ia-d) had glass transition temperatures between 229 and 279 degrees C, and the temperatures at 5% weight loss ranged from 510 to 533 degrees C under nitrogen. These polyimides could be cast into flexible and tough membranes from DMAc solutions. The membranes had tensile strengths in the range of 137-169 MPa, tensile modulus in the range of 1.6-2.2 GPa and elongations at break from 11% to 14%. The polyimide la with trifluoromethyl groups ortho to the imide nitrogen exhibited enhanced gas permeability, solubility, transparency, and thermal stability compared with the isomeric polyimide IIa with the CF3 group meta to the imide nitrogen.
Resumo:
Copper phthalocyanine derivative Langmuir-Blodgett (LB) films were prepared by vertical dipping and horizontal lifting methods. Molecular orientation of copper phthalocyanine derivative in thin films was studied by polarized UV-Vis spectra. The relationship between the molecular orientation of copper phthalocyanine in LB films and their gas-sensing properties was investigated.
Resumo:
A series of novel polyarylethersulfone (AB)(n) block copolymers with different segment lengths have been synthesized by nucleophilic solution polycondensation of phenoxide-terminated and fluorine-terminated oligomers; random copolymers have been prepared over the whole composition ranges. The structures of the resultant copolymers have been confirmed by FTIR, C-13 NMR spectra and differential scanning calorimetry (DSC). Compared with two homopolymers and random copolymers, the block copolymers of this study possess excellent thermal stability (5% thermal decomposition under nitrogen atmosphere above 500 C) and high glass transition temperatures, and have a wide melt-processing temperature range. They may become a new class of mouldable high performance thermoplastics. (C) 2001 Society of Chemical Industry.
Resumo:
Gas permeability coefficients of a series of aromatic polyimides, which were prepared from oxydiphthalic dianhydride (ODPA) with various aromatic diamines, with respect to H-2, CO2, O-2, N-2, and CH4 were measured under 10 atm and in the temperature range from 30 to 150 degrees C. A significant change in gas permeability and permselectivity resulting from systematic variation of the chemical structure of the polyimides was found. Among the polyimides which were prepared from phenylenediamine and its derivatives as well as bridged diamines without side groups on the benzene rings of the diamine residues, the increase of the gas permeability is accompanied by a decrease of the permselectivity. However, both the gas permeability and the permselectivity of the polyimides which were prepared from bridged diamines with methyl or methoxy groups on the benzene rings of the diamine residues simultaneously increase.
Resumo:
A series of aromatic copolyimides was prepared from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and 2,2-bis(3,4-dicarboxyphenyl)hexafluoroisopropane dianhydride (6FDA) with 3,3'-dimethyl-4,4'-methylene dianiline (DMMDA) by a chemical imidization. The gas permeability coefficients of the copolyimides to H-2, CO2, O-2, N-2 and CH4 were measured under 7 atm. pressure. The fractional free volume of 6FDA-DMMDA is larger than that of HQDPA-DMMDA, while the chain segmental mobility of 6FDA-DMMDA is lower than that of HQDPA-DMMDA. The gas permeability of 6FDA-DMMDA is much higher than that of HQDPA-DMMDA but the permselectivity of 6FDA-DMMDA for H-2, CO2, O-2, N-2 over CH4 is lower than that of HQDPA-DMMDA. The experimental values of the gas permeability coefficients of the copolyimides are in satisfactory agreement with the values estimated from the gas permeability coefficients of the constituent homopolyimides and their weight fractions.
Resumo:
The gas permeation properties of a series of cardo polyaryletherketone materials are reported, In this series, the hydrogen atoms of benzene rings on the backbone are systematically replaced with different alkyl substituents. The effects of temperature and structure variation on gas permeability and selectivity are discussed in detail. The experimental results revealed that the polyetherketone obtained by the introduction of dimethyl and diisopropyl substituents to phenolphthalein unit is 3 similar to 6 times more permeable than the unmodified one for the gases studied.
Resumo:
The monolayer and deposition behaviour of a symmetrically substituted copper tetra-4-(2, 4-di-t-amylphenoxy) phthalocyanine (tapCuPc) and an asymmetrically substituted copper [tri-4-(2, 4-di-t-amylphenoxy)-mono-4-(-2-methoxyethoxy)]phthalocyanine (AsyCuPc) were investigated. The results on monolayer behaviour and spectroscopic characterization of the LB films show that both CuPc molecules in a monolayer at the air-water interface and the LB films are stacked and inclined. The gas-sensitive properties show that the responding speed of AsyCuPc LB film is faster than that of tapCuPc LB film.
Resumo:
A high quality NaA zeolite membrane, which shows a H-2/n-C4H10 permselectivity of 106, has been synthesized on a seeded alpha-Al2O3 support by a multistage synthesis method.