101 resultados para Furfuryl alcohol resin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel bifunctional task-specific ionic liquid (TSIL), i.e. [trialkylmethylammonium][sec-nonylphenoxy acetate] ([A336] [CA-100]) was impregnated on intermediate polarized XAD-7 resin, and the prepared solvent impreganated resin (SIR) was studied for rare earth (RE) separation. Adsorption ability of the SIR was indicated to be obviously higher than that prepared by [A336][NO3] because of the functional anion of [A336][CA-100]. Adsorption kinetics, adsorption isotherm, separation and desorption of the SIR were also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of cost-effective, proton-conducting composite membranes, comprising of Nafion (R) ionomer, chitosan (CS). and polyvinyl alcohol (PVA), is successfully prepared. By taking advantage of the strong electrostatic interactions between Nafion (R) ionomer and CS component, Nafion ionomer is effectively implanted into the PVA/CS composite membranes, and improves proton conductivity of the PVA/CS composite membranes. Furthermore, this effect dramatically depends on the composition ratio of PVA/CS, and the optimum conductivity is obtained at the PVA/CS ratio of 1:1. The developed composite membranes exhibit much lower methanol permeability compared with the widely used Nafion (R) membrane, indicating that these novel membranes have great potential for direct methanol fuel cells (DMFCs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a facile method to create the chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. Great improvements in mechanical properties such as compressive failure strength and toughness have been achieved for the chemically converted graphene oxide/epoxy resin for a 0.0375 wt% loading of chemically converted graphene oxide sheets in epoxy resin by 48.3% and 1185.2%, respectively. In addition, the loading of graphene is also conveniently tunable even to 0.15 wt% just by increasing the volume of the graphene oxide dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, two industrial bimodal high density polyethylene resins, resin A and resin B having similar molecular weight (M-w), molecular weight distribution (M-wD), and short-chain branching (SCB) content but different mechanical properties, were fractionated through cross-fractionation. The fractions were further, characterized by GPC, C-13 NMR, DSC AND FT IR techniques. These two resins were firstly fractionated into two franctions, i.e. high-temperature and low temperature fractions, via preparative solution crystallization fractionation. Resin A with much better mechanical properties contains more high-temperature fractions with longer crystalizable sequences. The SCB content in the low temperature fraction of resin A is lower than the of resin B. Both low-temperature fractions were then further fractionated using solvent gradient fractionation (SGF). The characterization of SGF fraction indicates that most of the branches fall into the high molecular weight chain in both low-temperature fractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This feature article highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process, which uses the common metal salts (nitrates, acetates, chlorides, etc.) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as a cross-linking agent to form a polymeric resin on molecular level, reduces segregation of particular metal ions and ensures compositional homogeneity. This process can overcome most of the difficulties and disadvantages that frequently occur in the alkoxides based sol-gel process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+) -AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the absorption spectral characteristics and color-change reaction mechanism of cobalt(II) chloride(COCl2) in alcohol organic solvents has been investigated in the presence of water, and then the optimum conditions for determining the water content in the solvents were selected. Results indicated that the absorption spectra Of COCl2 in alcohols decreased with the increment of water content. At the maximum absorption wavelength of 656 nm, there were good linear relationships between the logarithm of the absorbance and the water content in organic solvents such as ethanol, n-propanol, iso-propanol and n-butanol with related coefficients in the range of 0.9996 similar to 0.9998. For determining water content in organic solvents, this method is simple, rapid, sensitive, reproducible and environmentally friendly. Furthermore, the linear range cannot restrict determination of the water content in organic solvents. This method had been applied to determine the water content in ethanol and n-butanol with satisfactory recovery of water in n-butanol between 98.41%-101.29%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Au (Au/C) catalyst for the cathodic catalyst in a direct formic acid fuel cell (DFAFC) was prepared using a polyvinyl alcohol (PVA) protection method. The results indicated that for oxygen reduction, the electrocatalytic activity of the Au/C catalyst prepared with the PVA protection method is much better than that of a Au/C catalyst prepared with the pre-precipitation method. This is due to the small average size and low relative crystallinity of the An particles in the Au/C catalyst prepared by the PVA protection method, compared to that of the Au/C catalyst prepared by the pre-precipitation method, illustrating that the average size and the relative crystallinity of the ALL particles has an effect on the electrocatalytic activity of the Au/C catalyst for oxygen reduction. In addition, because An has no electrocatalytic activity for the oxidation of formic acid, the Au/C catalyst possesses a high formic acid tolerance. After the electrocatalytic activity of the Au/C catalyst for the oxygen reduction is improved, it is suitable to be used as the cathodic catalyst in DFAFC.