73 resultados para Fuel Processing
Resumo:
Naphthene is generally considered difficult to convert in traditional pyrolysis, but the ring rupture becomes fairly easy with the presence of oxygen in the gas phase oxidative cracking of the model compound, cyclohexane. About 86.8% conversion of cyclohexane, 43.7% yield of light alkenes, 6.6% yield of benzene and 14.3% yield of CO could be obtained at 750 degreesC, at which temperature the pyrolysis of cyclohexane was negligible, while at 850 degreesC, the total yield of alkenes, benzene and CO was as high as 80% (50%, 12% and 18%, respectively) with 98% conversion of cyclohexane. The gas phase oxidative cracking process could be run in an autothermal way (cyclohexane/O-2 mole ratio of 0.69-0.8 in theory), which would minimize energy consumption and capital costs of the whole process. CO prevailed in the produced CO, and the yield Of CO2 was always below 1%, which means about 90% Of CO2 emission by fuel burning in pyrolysis would be saved. The gas phase oxidative cracking process appears to be an environmentally benign and efficient route for light alkene production with naphthene rich feedstocks. (C) 2004 Published by Elsevier B.V.
Resumo:
Direct synthesis of alcohols from CO and H2O was investigated using TiO2 catalyst. MeOH (about 24 mg g(-1) h(-1)) and EtOH (about 8 mg g(-1) h(-1)) could be produced under the reaction conditions of T= 573 K, P= 0.5 MPa, CO flow rate of 30 ml min(-1) and CO/H2O = 3/2 during the period of 12 to 44 h time-on-stream. Compared with PbO, TiO2 could preserve stable catalytic activity during a long time of reaction. For the same catalyst TiO2, the reaction performance of alkali carbonates increased with their solubility (K2CO3>Na2CO3>Li2CO3). The corresponding catalytic activity was found to increase with the alkalescence of solvent. The formation mechanism of alcohols was proposed as well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper gives a brief review of R&D researches for light olefin synthesis directly and indirectly from synthesis gas in the Dalian Institute of Chemical Physics (DICP). The first pilot plant test was on methanol to olefin (MTO) reaction and was finished in 1993, which was based on ZSM-5-type catalyst and fixed bed reaction. In the meantime, a new indirect method designated as SDTO (syngas via dimethylether to olefin) was proposed. In this process, metal-acid bifunctional catalyst was applied for synthesis gas to dimethylether(DME) reaction, and modified SAPO-34 catalyst that was synthesized by a new low-cost method with optimal crystal size was used to convert DME to light olefin on a fluidized bed reactor. The pilot plant test on SDTO was performed and finished in 1995. Evaluation of the pilot plant data showed that 190-200 g of DME were yielded by single-pass for each standard cubic meter of synthesis gas. For the second reaction, 1.880 tons of DME or 2.615 tons of methanol produced 1 ton of light olefins, which constitutes of 0.533 ton of ethylene, 0.349 ton of propylene and 0.118 ton of butene. DICP also paid some attention on direct conversion of synthesis gas to light olefins. A semi-pilot plant test (catalyst 1.8 1) was finished in 1995 with a CO conversion > 70% and a C(2)(=)-C(4)(=) olefin selectivity 71-74% in 1000 h. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A novel process is developed in this paper for utilizing the coalmine-drained methane gas that is usually vented straight into the atmosphere in most coalmines worldwide. It is expected that low-cost syngas can be produced by the combined air partial oxidation and CO2 reforming of methane, because this process utilizes directly the methane, air, and carbon dioxide in the coalmine-drained gas without going through the separation step. For this purpose, a nickel-magnesia solid solution catalyst was prepared and its catalytic performance for the proposed process was investigated. It was found that calcination temperature has significant influence on the catalytic performance due to the different extent of solid solution formation in the catalysts. A uniform nickel-magnesia solid solution catalyst exhibits higher stability than the catalysts in which NiO has not completely formed solid solution with MgO. Its catalytic activity and selectivity remain stable during 120 h of reaction. The product H-2/CO ratio is mainly dependent on the feed gas composition. By changing CO2/air ratio of the feed gases, syngas with a H-2/CO ratio between 1 and 1.9 can be obtained. The influences of reaction temperature and nickel loading on the catalytic performance were also investigated. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
Pulverized coal combustion in tangentially fired furnaces with fuel rich/lean burners was investigated for three low volatile coals. The burners were operated under the conditions with varied value N-d, which means the ratio of coal concentration of the fuel rich stream to that of the fuel lean stream. The wall temperature distributions in various positions were measured and analyzed. The carbon content in the char and Nox emission were detected under various conditions. The new burners with fuel rich/lean streams were utilized in a thermal power station to burn low volatile coal. The results show that the N-d value has significant influences on the distributions of temperature and char burnout. There exists an optimal N-d value under which the carbon content in the char and the Nox emission is relatively low. The coal ignition and Nox emission in the utilized power station are improved after retrofitting the burners.
Resumo:
A numerical model has been developed for simulating the rapid solidification processing (RSP) of Ni-Al alloy in order to predict the resultant phase composition semi-quantitatively during RSP. The present model couples the initial nucleation temperature evaluating method based on the time dependent nucleation theory, and solidified volume fraction calculation model based on the kinetics model of dendrite growth in undercooled melt. This model has been applied to predict the cooling curve and the volume fraction of solidified phases of Ni-Al alloy in planar flow casting. The numerical results agree with the experimental results semi-quantitatively.