103 resultados para Fourier law


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scaling law of photoionization in few-cycle laser pulses is verified in this paper. By means of numerical solution of time-dependent Schrodinger equation, the photoionization and the asymmetry degree of photoionization of atoms with different binding potential irradiated by various laser pulses are studied. We find that the effect of increasing pulse intensity is compensated by deepening the atomic binding potential. In order to keep the asymmetric photoionization unchanged, if the central frequency of the pulse is enlarged by k times, the atomic binding potential should also be enlarged by k times, and the laser intensity should be enlarged by k(3) times. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of the numerical solution of time-dependant Schrodinger equation, we verify a scaling law of photoionization in ultrashort pulses. We find that for a given carrier-envelope phase and duration of the pulse, identical photoionizations are obtained provided that when the central frequency of the pulse is enlarged by k times, the atomic binding potential is enlarged by k times, and the laser intensity is enlarged by k(3) times. The scaling law allows us to reach a significant control over direction of photoemission and offers exciting prospects of reaching similar physical processes in different interacting systems which constitutes a novel kind of coherent control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoelectron angular distributions (PADs) from above-threshold ionization of atoms irradiated by one-cycle laser pulses satisfy a scaling law. The scaling law denotes that the main features of the PADs are determined by four dimensionless parameters: (1) the ponderomotive number u(p) = U-p/hw, the ponderomotive energy U-p in units of laser photon energy; (2) the binding number E-b = E-b/h(w), the atomic binding energy E-b in units of laser photon energy; (3) the number of absorbed photons q; (4) the carrier-envelope phase phi(0), the phase of the carrier wave with respect to the envelope. We verify the scaling law by theoretical analysis and numerical calculation, compared to that in long-pulse case. A possible experimental test to verify the scaling law is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple three-axis model has been developed, which has been successfully applied to the analysis of the light transmittance in spatial incident angle and the simulation of modified formula of Malus' law for Glan-Taylor prisms. Our results indicate that the fluctuations on the cosine squared curve are due to specific misalignments between the axis of the optical system, the optical axis of the prism and the mechanical axis (rotation axis) of prism, which results in the fact that different initial relative location of the to-be-measured-prism in the testing system corresponds to different shape of Malus' law curve. Methods to get absolutely smooth curve are proposed. This analysis is available for other kinds of Glan-type prisms. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a scaling law of photoionization of atoms irradiated by intense, few- cycle laser pulses is established. The scaling law sets a relation to the phase- dependent ionization with the kinetic energy of photoelectrons, the duration and peak intensity of short pulses, and the ionization potential of the target atoms. We find that it will be advantageous to manifest the phase- dependent photoionization by choosing the target atoms with larger ionization potential, using laser with smaller carrier- frequency, and increasing the pulse intensity. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-step phase-retrieval method, based on Fourier-transform ghost imaging, was demonstrated. For the complex objects, the phase-retrieval process was divided into two steps: first got the complex object's amplitude from the Fourier-transform patterns of the squared object function, then combining with the Fourier-transform patterns of the object function to get the phase. The theoretical basis of this technique is outlined, and the experimental results are presented. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fractional Fourier transform of an object can be observed in the free-space Fresnel diffraction pattern of the object. (C) 1997 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scaled fractional Fourier transform is suggested and is implemented optically by one lens for different values of phi and output scale. In addition, physically it relates the FRT with the general lens transform-the optical diffraction between two asymmetrically positioned planes before and after a lens. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of an extended fractional Fourier transform (FRT) is suggested. Previous PBT's and complex FRT's are only its subclasses. Then, through this concept and its method, we explain the physical meaning of any optical Fresnel diffraction through a lens: It is just an extended FRT; a lens-cascaded system can equivalently be simplified to a simple analyzer of the FRT; the two-independent-parameter FRT of an object illuminated with a plane wave can be readily implemented by a lens of arbitrary focal length; when cascading, the Function of each lens unit and the relationship between the adjacent ones are clear and simple; and more parameters and fewer restrictions on cascading make the optical design easy. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a technique for dynamic full-range Fourier-domain optical coherence tomography by using sinusoidal phase-modulating interferometry, where both the full-range structural information and depth-resolved dynamic information are obtained. A novel frequency-domain filtering algorithm is proposed to reconstruct a time-dependent complex spectral interferogram from the sinusoidally phase-modulated interferogram detected with a high-rate CCD camera. By taking the amplitude and phase of the inverse Fourier transform of the complex spectral interferogram, a time-dependent full-range cross-sectional image and depth-resolved displacement are obtained. Displacement of a sinusoidally vibrating glass cover slip behind a fixed glass cover slip is measured with subwavelength sensitivity to demonstrate the depth-resolved dynamic imaging capability of our system. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors have demonstrated the principle of a novel optical multichannel-scale range-tunable Fourier-transforming system. The experimental results show good agreement with the theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a full-range parallel Fourier-domain optical coherence tomography (FD-OCT) in which a tomogram free of mirror images as well as DC and autocorrelation terms is obtained in parallel. The phase and amplitude of two-dimensional spectral interferograms are accurately detected by using sinusoidal phase-modulating interferometry and a two-dimensional CCD camera, which allows for the reconstruction of two-dimensional complex spectral interferograms. By line-by-line inverse Fourier transformation of the two-dimensional complex spectral interferogram, a full-range parallel FD-OCT is realized. Tomographic images of two separated glass coverslips obtained with our method are presented as a proof-of-principle experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a technique for dynamic full-range Fourier-domain optical coherence tomography by using sinusoidal phase-modulating interferometry, where both the full-range structural information and depth-resolved dynamic information are obtained. A novel frequency-domain filtering algorithm is proposed to reconstruct a time-dependent complex spectral interferogram from the sinusoidally phase-modulated interferogram detected with a high-rate CCD camera. By taking the amplitude and phase of the inverse Fourier transform of the complex spectral interferogram, a time-dependent full-range cross-sectional image and depth-resolved displacement are obtained. Displacement of a sinusoidally vibrating glass cover slip behind a fixed glass cover slip is measured with subwavelength sensitivity to demonstrate the depth-resolved dynamic imaging capability of our system. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel method of one-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency for full range imaging. The spatial carrier frequency is introduced into the 2-D spectral interferogram in the lateral direction by using a tilted reference wavefront. This spatial-carrier- contained 2-D spectral interferogram is recorded with one shot of a 2-D CCD camera, and is Fourier-transformed in the lateral direction to obtain a 2-D complex spectral interferogram by a spatial-carrier technique. A full-range tomogram is reconstructed from the 2-D complex spectral interferogram. The principle of this method is confirmed by cross-sectional imaging of a glass slip object. (c) 2008 Society of Photo-Optical Instrumentation Engineers.