63 resultados para Fluorescence spectroscopy
Resumo:
Thin films of an organo-soluble polyimide based on 1,4-(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and 2,2'-dimethyl-4,4'-methylene dianiline (DMMDA) have been studied. A prism coupler was used to measure the refractive indices. The average refractive indices of thin films prepared by annealing at different temperatures and times were chosen to characterize the condensation states of thin films. Thin films annealed at 200 degrees C show irreversible changes in physical properties, eg solubility. FTIR spectroscopy showed that the chain structures of the above thin films remained unchanged. It is proposed that specific molecular interactions induce the irreversible changes revealed by fluorescence spectroscopy. (C) 2000 Society of Chemical Industry.
Resumo:
Physical properties of thin films of soluble and insoluble aromatic polyimides were compared by d.s.c., u.v.-visible and fluorescence spectroscopy, and prism coupler technique. D.s.c. results showed that the thermal properties of insoluble polyimides are superior to those of soluble ones, owing to the specific molecular interactions of insoluble polyimides, revealed by fluorescence spectroscopy. However, the specific molecular interactions sacrifice the transparency in their thin films, shown by u.v.-visible transmission spectra. Negative birefringence of thin films, not only for soluble polimides but also for polyamic acids of insoluble polyimides, was confirmed by prism coupler, while thin films of insoluble polyimides thermally imidized lack high levels of negative birefringence. It is regarded that thin films of insoluble polyimides thermally imidized are likely to be isotropic because of molecular relaxation above their glass transition temperatures (T-g) in the course of thermal imidization, according to Flory's principle. On the contrary, thin films of insoluble poyimide chemically imidized keep the same levels of negative birefringence as those of the relevant polyamic acid thin films. Judging from the opposite cases, it is recognized that molecular relaxation above T-g weakens the optical anisotropy of polyimide thin films. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Circular dichroism (CD), fourier transform infrared (FTIR), and fluorescence spectroscopy were used to explore the effect of dimethyl sulfoxide (DMSO) on the structure and function of hemoglobin (Hb). The native tertiary structure was disrupted completely when the concentration of DMSO reached 50% (v/v), which was determined by loss of the characteristic Soret CD spectrum. Loss of the native tertiary structure could be mainly caused by breaking the hydrogen bonds, between the heme propionate groups and nearby surface amino acid residues, and by disorganizing the hydrophobic interior of this protein. Upon exposure of Hb to 52% DMSO for ca. 12 h in a D2O medium no significant change in 1652 cm(-1) band of the FTIR spectrum was produced, which demonstrated that alpha-helical structure predominated. When the concentration of DMSO increased to 57%: (1) the band at 1652 cm(-1) disappeared with the appearance of two new bands located at 1661 and 1648 cm(-1); (2) another new band at 1623 cm(-1) was attributed to the formation of intermolecular beta-sheet or aggregation, which was the direct consequence of breaking of the polypeptide chain by the competition of S=O groups in DMSO with C=O groups in amide bonds. Further increasing the DMSO concentration to 80%, the intensity at 1623 cm(-1) increased, and the bands at 1684, 1661 and 1648 cm(-1) shifted to 1688, 1664 and 1644 cm(-1), respectively. These changes showed that the native secondary structure of Hb was last and led to further aggregation and increase of the content of 'free' amide C=O groups. In pure DMSO solvent, the major band at 1664 cm(-1) indicated that almost all of both the intermolecular beta-sheet and any residual secondary structure were completely disrupted. The red shift of the fluorescence emission maxima showed that the tryptophan residues were exposed to a greater hydrophilic environment as the DMSO content increased. GO-binding experiment suggested that the biological function of Hb was disrupted seriously even if the content of DMSO was 20%. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
自然界水体(如地下水、湖泊、河流及海洋)中的天然有机质(NOM)因具有显著的生态及环境功能而受到人们的广泛关注。NOM作为全球碳循环的主要组成部分,是水体中异养型微生物生长所需碳及能量的重要来源。此外,NOM对湖泊生态系统中的多种物理、化学过程具有不同程度的影响:NOM中的有机酸对淡水体系的酸度具有控制作用而且对酸沉降有一定的缓冲作用;NOM通过减弱可见光及紫外线照射从而影响淡水系统的光化学环境,这一方面降低了水体中自养生物的繁衍速度,同时保护水生生物免受有害的紫外线辐射。更为重要的是,NOM能够影响环境中污染物的命运,比如重金属离子和疏水性有机污染物与天然有机质结合后,其迁移途径、溶解度、生物可利用性及毒性受到明显的控制,这样其对环境中生物的危害性减弱。多环芳烃(PAHs)是一类对环境危害极大的疏水性有机污染物,多数PAHs对有机体具有毒性和致癌性而被美国环保署(EPA)列为优先处理的污染物。因此,确定NOM-PAHs反应的强弱,即PAHs在NOM中的分配系数(Kdoc)以及NOM的物化特性对Kdoc的影响对于预测PAHs毒性和生物可利用性大小、了解NOM-PAHs相互作用的机理及确立污染预测模型具有十分重大的意义。前人的研究结果表明,多环芳烃与天然有机质相互作用的分配系数Kdoc的与PAHs的疏水度(即Kow大小)、NOM的物化特性(如芳香度、脂肪碳含量、分子量及极性等)和水化学参数(pH、离子强度等)有很大的相关性。然而,许多学者在NOM的物化特性对分配系数的影响方面存有较大分歧。前人在研究天然有机质与多环芳烃之间的相互作用时所用的NOM多为腐殖质,即水体NOM中的疏水性组分,而其中的亲水性组分与PAHs的结合作用文献中却鲜见提及,因此人们对其结合作用的特性如反应机理和结合作用强弱等的了解十分有限。 本论文利用XAD树脂分离技术把红枫湖水体中天然有机质分成了疏水性酸、碱、中性物质和亲水性酸、碱、中性物质等六种有机组分。同时运用元素分析、有机碳分析仪、紫外-可见分光光度,高效液相体积排阻色谱、三维荧光光谱和荧光偏振技术等现代分析方法,对各有机组分的物理、化学特性进行了表征。荧光光谱技术被用于研究水化学参数对腐殖质荧光特性和分子构型的影响以及测定Amherst腐殖酸(Amherst HA)、垃圾渗滤液富里酸(LF FA)和红枫湖NOM有机组分与多环芳烃苝、菲和蒽的结合系数(分配系数、条件稳定常数)并探讨了影响分配系数的各种因素和NOM与多环芳烃相互作用的机理。本论文的获得的主要结果如下: 1. 在水化学参数对腐殖质荧光特性及分子构型的影响方面: 在NOM与PAHs相互作用过程中,腐殖质的分子构型起着关键性的作用,而其分子构型又受到其本身的浓度、溶液的pH和离子强度等水化学参数的影响。本论文运用三维荧光光谱和荧光偏振技术研究了水化学参数对腐殖质荧光特性的影响,并由此推断其分子构型变化情况。实验结果表明随着腐殖质浓度、溶液的pH和离子强度的改变,腐殖质荧光特性(如荧光强度、荧光峰位和荧光偏振值等)出现不同程度的变化,揭示了腐殖质分子构型的改变。因此,本实验结果有利于深入了解腐殖质的分子构型及其对吸附PAHs的重要影响,对理解NOM的环境行为具有一定的理论价值。 2. 运用荧光猝灭滴定法研究Amherst HA和红枫湖NOM有机组分对多环芳烃苝、菲和蒽的吸附作用,结果表明NOM对多环芳烃的吸附能力与其中芳香结构单元有很强的相关性,logKdoc值与NOM在280 nm处的摩尔吸收(ε280)和分子量有线性度较高的正比关系,而C/H原子比值对不饱和碳含量(芳香度)并没有很好的指示作用。同时,脂肪碳(0-50 ppm)中的聚亚甲基碳对吸附PAHs也有很大的贡献,而有机组分的极性与分配系数有明显的负相关性。不同种类的多环芳烃与NOM有机组分的结合能力有很大的差异,这取决于不同PAHs的疏水度大小。本研究结果有利于弥合前人在NOM物化特性对PAHs吸附能力的影响方面的分歧,揭示了NOM的组成和结构在与PAHs等疏水性有机污染物相互作用方面的重要影响。 3. 在结合机理方面,苝与NOM有机组分结合的Stern-Volmer图具有较高的线性度,这表明其结合机理以疏水反应(或分配)为主,而菲和蒽与有机组分相互作用的吸附等温线显示较多的非线性特征表明极性反应为主要反应机理,结合过程以吸附为主。在红枫湖NOM有机组分中,疏水性组分显示对PAHs较高的结合能力,同时疏水性组分与PAHs相互作用的吸附等温线具有较高的线性度。这一结果揭示了不同种类的PAHs和各NOM有机组分之间结合机理的差异,加深了人们对NOM与PAHs相互作用机理的认识。 4. 前人在研究pH、离子强度等水化学参数对分配系数的影响方面得到的结果多有矛盾之处,同时,对实验结果的解释也不尽相同。本实验结果表明分配系数随pH增加而下降;离子强度对分配系数的影响比较复杂,就总体趋势而言,增加离子强度有利于对PAHs吸附能力的提高,这一结果初步揭示了水化学参数对PAHs分配系数的影响,丰富了人们对其影响机理的认识。 5. 运用荧光偏振技术测定了蒽与Amherst HA、LF FA和红枫湖NOM有机组分的条件稳定常数,结果如下:随着NOM浓度增加,蒽的荧光偏振值不断下降,这表明蒽的分子构型由平面线性向圆柱状转变。在所有NOM样品中,土壤源的Amherst HA与蒽结合的条件稳定常数最大(pH 4时logK=5.6,pH 6时 logK=5.4);就NOM有机组分而言,疏水性组分的logK变化范围在pH 6时为(4.4-5.2),而亲水性组分为(4.3-4.8),这表明疏水性组分具有相对较高的蒽吸附能力。实验结果有利于了解PAHs与NOM相互作用前后的分子构型变化情况,揭示了不同的NOM有机组分在吸附PAHs过程中的差异。
Resumo:
本论文通过选择这一国际前沿科学领域,主要运用三维荧光光谱仪、紫外-可见分光光度仪、溶解有机碳/氮分析仪、高效体积排阻色谱、荧光猝灭滴定等分析化学方法和手段,对云贵高原湖泊红枫湖、百花湖、洱海沉积物孔隙水以及一些河流等当中的DOM及其水化学特征进行了深入细致的研究,并且运用三维激发发射荧光光谱研究DOM中不同组分与Hg的相互作用,在溶解有机质的化学结构及其与金属汞的相互作用机理等方面取得了一些进展.
Resumo:
Ti-substituted mesoporous SBA-15 (Ti-SBA-15) materials have been synthesized by using a new approach in which the hydrolysis of the silicon precursor (tetramethoxysilane, TMOS) is accelerated by fluoride. These materials were characterized by powder X-ray diffraction patterns (XRD), X-ray fluorescence spectroscopy (Y-RF), N-2 sorption isotherms, diffuse-reflectance UV-visible (UV-vis) and UV-Raman spectroscopy, Si-29 MAS NMR, and the catalytic epoxidation reaction of styrene. Experiments show that Ti-SBA-15 samples of high quality can be obtained under the following conditions: F/Si greater than or equal to 0.03 (molar ratio), pH less than or equal to 1.0, aging temperature less than or equal to 80 degreesC, and Ti/Si less than or equal to 0.01. It was found that the hydrolysis rate of TMOS was remarkably accelerated by fluoride, which was suggested to play the main role in the formation of Ti-SBA-15 materials of high quality. There is no stoichiometric incorporation of Ti, and the Ti contents that are obtained are quite low in the case of the approach that is proposed. The calcined Ti-SBA-15 materials show highly catalytic activity in the epoxidation of styrene.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC-HCI) as the dehydrant with fluorescence detection has been developed. Amines were derivatized to their acidamides with labeling reagent 2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA). Studies on derivatization conditions indicated that the coupling reaction proceeded rapidly and smoothly in the presence of a base catalyst in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum at lambda(ex) 260nm and an emission maximum at lambda(em) 380nm. The labeled derivatives exhibited high stability and were enough to be efficiently analyzed by high-performance liquid chromatography. Identification of derivatives was carried out by online post-column mass spectrometry (LC/APCI-MS/MS) and showed an intense protonated molecular ion corresponding m/z [MH](+) under APCI in positive-ion mode. At the same time, the fluorescence properties of derivatives in various solvents or at different temperature were investigated. The method, in conjunction with a gradient elution, offered a baseline resolution of the common amine derivatives on a reversed-phase Eclipse XDB-C-8 column. LC separation for the derivatized amines showed good reproducibility with acetonitrile-water as mobile phase. Detection limits calculated from 0.78 pmol injection, at a signal-to-noise ratio of 3, were 3.1-18.2 fmol. The mean intra- and inter-assay precision for all amine levels were < 3.85% and 2.11%, respectively. Excellent linear responses were observed with coefficients of > 0.9996. The established method for the determination of aliphatic amines from real wastewater and biological samples was satisfactory. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.
Resumo:
An optimal feedback control of two-photon fluorescence in the Coumarin 515 ethanol solution excited by shaping femtosecond laser pulses based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence intensity can be enhanced by similar to 20%. Second harmonic generation frequency-resolved optical gating traces indicate that the optimal laser pulses are positive chirp, which are in favor of the effective population transfer of two-photon transitions. The dependence of the two-photon fluorescence signal on the laser pulse chirp is investigated to validate the theoretical model for the effective population transfer of two-photon transitions. The experimental results appear the potential applications in nonlinear spectroscopy and molecular physics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effect of alcohol solution on single human red blood Cells (RBCs) was investigated using near-infrared laser tweezers Raman spectroscopy (LTRS). In our system, a low-power diode laser at 785 nm was applied for the trapping of a living cell and the excitation of its Raman spectrum. Such a design could simultaneously reduce the photo-damage to the cell and suppress the interference from the fluorescence on the Raman signal. The denaturation process of single RBCs in 20% alcohol solution was investigated by detecting the time evolution of the Raman spectra at the single-cell level. The vitality of RBCs was characterized by the Raman band at 752 cm(-1), which corresponds to the porphyrin breathing mode. We found that the intensity of this band decreased by 34.1% over a period of 25 min after the administration of alcohol. In a further study of the dependence of denaturation on alcohol concentration, we discovered that the decrease in the intensity of the 752 cm(-1) band became more rapid and more prominent as the alcohol concentration increased. The present LTRS technique may have several potential applications in cell biology and medicine, including probing dynamic cellular processes at the single cell level and diagnosing cell disorders in real time. Copyright (c) 2005 John Wiley T Sons, Ltd.
Resumo:
Fluorescence of Tm3+/Er3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce3+ are investigated. It shows that Ce3+ codoping with Tm3+/Er3+ in BS glasses results in a quenching of Tm3+ ion emission from F-3(4) to the H-3(6) level. Consequently, the 1.47 mu m emission occurs after the population inversion between the H-3(4) and F-3(4) levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55 mu m emission band of Er3+ with 1.47 mu m emission band of Tm3+ under 800nm excitation.
Resumo:
Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Er3+/Yb3+-codoped potassium-barium-strontium-lead-bismuth glasses for developing potential upconversion lasers have been fabricated and characterized. Based on the results of energy transfer efficiency, the optimal Yb3+/Er3+ concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 run, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We study the structural and infrared-to-visible upconversion fluorescence properties of Er3(+)/Yb3+-codoped lead-free germanium-bismuth glass. The structure of lead-free germanium-bismuth-lanthanum glass is investigated by peak-deconvolution of Raman spectroscopy. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> (IT15/2)-I-4 -> S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, are observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm excitation.