126 resultados para Flow Chart
Resumo:
Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.
Resumo:
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
Resumo:
The velocity fields of oscillatory convection have been measured using the techniques of Particle Image Velocimetry (PIV) in a liquid bridge of half floating zone with small typical scales of a few millimeters for emphasizing the thermocapillary effect in comparison with the effect of buoyancy. The flow patterns of the oscillatory flow have been studied experimentally in a liquid bridge. The flow patterns in the liquid bridge are classified with mode numbers according to oscillatory flow characteristics. Results of the experiment show that the mode depends on the aspect ratio as well as the volume ratio of the liquid bridge. The experimental results are helpful for studying the structure of flow at the onset of oscillatory thermocapillary convection in a liquid bridge.
Resumo:
根据两流体同心环状流线性稳定性分析的结果 ,对微重力气 /液两相流地面模拟实验所应遵循的相似准则进行了探讨 ,得到了一个新的重力无关性准则 ,即Bond数和环形区流体相的毛细数之比的绝对值不大于 1 .此外 ,微重力气 /液两相流模拟实验还必须满足两个条件 ,即流量比和气相表观Weber数应与所模拟的流动中对应数值相等 . In the present paper, the principle of similarity for two phase flows at microgravity is studied based on the results of the linear stability analysis of the two fluid concentric annular flow configuration. A new criterion of gravity independence, namely the absolute value of the ratio between the Bond number and the capillary number of the phase flowing in the annulus is no more than one, is achieved. It is also pointed out that the flowrate ratio and the gas superficial Weber number must have the same ...
Resumo:
A new model is developed for predicting the transition from the slug to annular flow of adiabatic two-phase gas/liquid flow in microgravity (mu g) environment. This model is based on the analyses of the effects of the surface tension and the gas inertia in a sense of more physical approach. The drift-flux model is applied to determine the gas void fraction near the transition region. The new model is compared with previous models and experimental data, and the results show the improvement in explanation of the experimental results.
Resumo:
采用双向耦合的双流体模型,研究了大气悬浮沙尘的存在对大气边界层中层流底层流动特性及摩阻系数的影响,计算并讨论了不同沙尘含量下含尘大气相对于无尘大气摩阻系数的变化。结果表明:摩阻系数的变化取决于悬浮沙尘的初始运动状态和质量载荷率。
Resumo:
We investigate plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass using depth sensing nanoindentation. Numerous serrations in the load-displacement curves during indentation, shear bands and pile-ups around the indent were observed. The results revealed that the serrated plastic flow behaviour in this alloy depends strongly on the indentation strain rate.
Resumo:
The characterization of air-water two-phase vertical flow in a 12 m flow loop with 1.5 m of vertical section is studied by using electrical resistance tomography (ERT). By applying a fast data collection to a dual-plane ERT sensor and an iterative image reconstruction algorithm, relevant information is gathered for implementation of flow characteristics, particularly for flow regime recognition. A cross-correlation method is also used to interpret the velocity distribution of the gas phase on the cross section. The paper demonstrates that ERT can now be deployed routinely for velocity measurements and this capability will increase as faster measurement systems evolve.
Resumo:
There are many fault block fields in China. A fault block field consists of fault pools. The small fault pools can be viewed as the closed circle reservoirs in some case. In order to know the pressure change of the developed formation and provide the formation data for developing the fault block fields reasonably, the transient flow should be researched. In this paper, we use the automatic mesh generation technology and the finite element method to solve the transient flow problem for the well located in the closed circle reservoir, especially for the well located in an arbitrary position in the closed circle reservoir. The pressure diffusion process is visualized and the well-location factor concept is first proposed in this paper. The typical curves of pressure vs time for the well with different well-location factors are presented. By comparing numerical results with the analytical solutions of the well located in the center of the closed circle reservoir, the numerical method is verified.
Resumo:
先介绍了气力输送的实验设备.评述了水平栓流气力输送的压力降计算方法,用3种不同的方法计算了压力降并与实验数据进行比较.此外评述了用特征线方法进行水平管的数值模拟,倾斜管的压力降计算和长距离的栓流气力输送.最后展望了该领域的发展方向.
Resumo:
用去离子水及有机液体在内径约为25μm的石英圆管内进行了流量特性实验.液体分子量范围为18~160,动力黏性系数的范围为0.5~1 mPa.s.实验雷诺数范围为Re<8.所用有机液体为:四氯化碳、乙基苯及环己烷都是非极性液体,其分子结构尺度小于1 nm.实验结果表明,在定常层流条件下,圆管内的液体流量与两端压力差成正比,其压力-流量关系仍符合经典的Hagen-Poiseuille流动.这说明非极性小分子有机液体在本实验所用微米尺度管道中其流动规律仍符合连续介质假设.鉴于微尺度流动实验的特殊性,文中还介绍了微流动实验装置,分析了微尺度流动测量误差来源及提高测量精度的措施.
Resumo:
Structure and dynamical processes of vortex dislocations in a kind of wake-type flow are described clearly by vortex lines, which are directly constructed from data of three-dimensional direct numerical simulations of the flow evolution.
Resumo:
高超声速条件下,乘波体布局具有高升阻比特性,本文应用单纯形加速法,以最大升阻比为目标,开展了锥形流乘波体布局优化设计研究.特别是,研究了在高层大气飞行时雷诺数效应与气动特性的关系,从乘波体飞行高度与设计长度两方面探讨雷诺数对乘波体优化的影响,结果表明:给定设计马赫数和圆锥角情况下,对于最大升阻比优化乘波体,其雷诺数越小,摩擦阻力越大,而升阻比越低.
Resumo:
The flow characteristics of liquids in microtubes driven by a high pressure ranging from 1 MPa to 30 MPa are studied in this paper. The diameter of the microtube is from 3 μm to 10 μm and liquids composed of simple small molecules are chosen as the working fluids. The Reynolds number ranges from 0. 1 to 24. The behavior of isopropanol and carbon tetrachloride under high pressure is found different from the prediction from conventional Hagen-Poiseuille (HP) equation. The normalized friction coefficient C* increases significantly with the pressure. From an analysis of the microtube deformation, liquid compressibility, viscous heating and wall slip, it may be seen that the viscosity at high pressure plays an important role here. An exponential function of viscosity vs pressure is introduced into the HP equation to counteract the difference between experimental and theoretical values. However, this difference is not so marked for di-water.