231 resultados para Fertilization of plants by insects
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating protein that has a wide range of pharmacological activities. The present study investigated the effectiveness of TCS on herpes simplex virus (HSV-1). The anti-viral activity and toxicity of TCS on Vero
Resumo:
The aerobic degradation of hexachlorobenzene (HCB) by an acclimated microbial community which isolated from a contaminated site and acclimated in our laboratory was investigated. The enriched microbial community was capable of biodegrading HCB when cultivated in minimal salts medium and supplied HCB as the sole carbon source. The efficiencies of microbial community in the degradation of HCB under different pH and temperatures were examined. The phylogenetic analysis for the nearly complete sequences of 16S rDNA demonstrated that the bacteria assemblage in the microbial community was dominated by Azospirillum and Alcaligenes groups.
Resumo:
While it has been widely suggested that freshwater fishes from East Asia invaded the western Palaearctic, details about this process are largely unknown. Here, using the cytochrome b gene, we evaluated the phylogenetic relationships of a small group of Eurasian primary freshwater fishes (Cobitidae), which are widely distributed and species rich in East Asia and Europe, with the purpose of inferring their invasion process of Europe from East Asia. Though phylogenetic relationships of cobitids were not well resolved, our analysis could identify three sister groups formed by the European and East Asian cobitids, which brought new insights into the biogeography of the genera Cobitis, Misgurnus, and Sabanejewia. The present results support the view that Asian cobitid fishes may have invaded Europe at least five times independently, and once reverse colonization of European cobitids to East Asia could also be found. Ancestral Sabanejewia might have been the first cobitids to cross Siberia and invade the EMZS (Euro-Mediterranean zoogeographic subregion) about 33.54 million years ago (MYA). One lineage of Cobitis and the ancestor of Misgurnus fossilis (Linnaeus) almost in the same time invaded the Europe, responding to 16.71 MYA and 16.59 MYA, respectively. Three different lineages of Cobitis were found to have invaded the EMZS from East Asia, and once reverse invasion to East Asia occurred to one subclade of European Cobitis. And our data also suggest that the diversity of East Asian cobitid fishes, especially of the genus Cobitis, is greatly underestimated.
Resumo:
This study was undertaken to investigate the role of the glutathione-involved detoxifying mechanism in defending the tobacco BY-2 suspension cells against microcystin-RR (MC-RR). Analysis showed that exposure of the cells to different concentrations of MC-RR (0.1, 1 and 10 mu g/mL) for 0-6 days resulted in a time and concentration-dependent decrease in cell viability and increase in reactive oxygen species (ROS) content. Reduced glutathione (GSH) and total glutathione (tGSH) content as well as glutathione reductase (GR), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) activities significantly increased after 3-4 days exposure in the highest two concentration treated groups, while decreased until reaching the control values except for GPX at day 6. Oxidized glutathione (GSSG) content markedly increased compared with control in high concentration MC-RR treated group after 6 days exposure. The GSH/GSSG ratio was much higher than control in 10 mu g/mL MC-RR treated group at day 4, but after 6 days exposure, the ratios in all treated groups were lower than that of the control group.
Resumo:
The phytoremediation of triazophos (O, O-diethyl-O-(1-phenyl-1, 2, 4-triazole-3-base) sulfur phosphate, TAP) by Canna indica Linn. in a hydroponic system was studied. After 21 d of exposure, the removal kinetic constant (K) of TAP was 0.0229-0.0339 d(-1) and the removal percentage of TAP was 41-55% in the plant system and the K and removal percentage of TAP were about 0.002 d(-1) and 1%, respectively, in darkness and disinfected control. However, the K and removal percentage of TAP were 0.006 d(-1) and approximately 11%, respectively, in the treatment with eluate from the media of constructed wetland. The contribution of plant to the remediation of TAP was 74% and C. indica played the most important role in the hydroponic system. Under the stress of TAP and without inorganic phosphorus nutrient, the activity of phosphatase in the plant system increased and phytodegradation was observed. The production and release of phosphatase is seen as the key mechanism for C. indica to degrade TAP. C. indica, which showed the potential of phytoremediation of TAP, and is commonly used in constructed wetland, so the technique of phytoremediation of TAP from contaminated water can be developed with the combination of constructed wetland.
Resumo:
The aim of this study was to examine the effects of chemical nonylphenols (NPs) on the antioxidant system of Microcystis aeruginosa strains. The degradation and sorption of NPs by M. aeruginosa were also evaluated. High concentrations of NPs (1 and 2 mg/l) were found to cause increases in superoxidase dismutase (SOD) and glutathione-S-transferase (GST) activities and in glutathione (GSH) levels. These results suggest that toxic stress manifested by elevated SOD and GST levels and GSH contents may be responsible for the toxicity of NPs to M. aeruginosa and that the algal cells could improve their antioxidant and detoxification ability through the enhancement of enzymatic and nonenzymatic prevention substances. The observed elevations in GSH levels and GST activities were relatively higher than those in SOD activities, indicating that GSH and GST contributed more in eliminating toxic effects than SOD. Low concentrations of NPs (0.05-0.2 mg/l) enhanced cell growth and decreased GST activity in algal cells of M. aeruginosa, suggesting that NPs may have acted as a protecting factor, such as an antioxidant. The larger portion of the NPs (> 60%) disappeared after 12 days of incubation, indicating the strong ability of M. aeruginosa to degrade the moderate persistent NP compounds. The sorption ratio of M. aeruginosa after a 12-day exposure to low nominal concentrations of NPs (0.02-0.5 mg/l) was relatively high (> 30%). The fact that M. aeruginosa effectively resisted the toxic effects of NPs and strongly degraded these pollutants indicate that M. aeruginosa cells have a strong ability to adapt to variations in environmental conditions and that low and moderate concentrations of organic compounds may favor its survival. Further studies are needed to provide detailed information on the fate of persistent organic pollutants and the survival of algae and to determine the possible role of organic pollutants in the occurrence of water blooms in eutrophic lakes.
Resumo:
The dibenzofuran (DF)-degrading bacterium, Janibacter terrae strain XJ-1, was isolated from sediment from East Lake in Wuhan, China. This strain grows aerobically on DF as the sole source of carbon and energy; it has a doubling time of 12 hours at 30 degrees C; and it almost completely degraded 100 mg/L-1 DF in 5 days, producing 2,2',3-trihydroxybiphenyl, salicylic acid, gentisic acid, and other metabolites. The dbdA (DF dioxygenase) gene cluster in the strain is almost identical to that on a large plasmid in Terrabacter sp. YK3. Unlike Janibacter sp. strain YY-1, XJ-1 accumulates gentisic acid rather than catechol as a final product of DF degradation.
Resumo:
Changing the ratio of light-harvesting pigments was regarded as an efficient way to improve the photosynthesis rate in microalgae, but the underlying mechanism is still unclear. In the present study, a mutant of Anabeana simensis (called SP) was selected from retrieved satellite cultures. Several parameters related with photosynthesis, such as the growth, photosynthesis rate, the content of photosynthetic pigment, low temperature fluorescence spectrum (77K) and electron transport rate, were compared with those of the wild type. It was found that the change in the ratio of light-harvesting pigments in the mutant led to more efficient light energy transfer and usage in mutant than in the wild type. This may be the reason why the mutant had higher photosynthesis and growth rates.
Resumo:
The occurrence of the microcystins in the water bodies, especially in drinking water resources, has received considerable attentions. In situ chemical oxidation is a promising cost-effective treatment method to remove MC from water body. This research investigated the reaction kinetics of the oxidation of MCRR by permanganate. Experimental results indicate that the reaction is second order overall and first order with respect to both permanganate and MCRR, and has an activation energy of 18.9 kJ/mol. The second-order rate constant ranges from 0.154 to 0.225 l/mg/min at temperature from 15 to 30 degrees C. The MCRR degradation rates can be accelerated through increasing reaction temperature and oxidant concentration. The reaction under acid conditions was slightly faster than under alkaline conditions. The half-life of the reaction was less than 1 min, and more than 99.5% of MCRR was degraded within 10 min. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Water solubility enhancements of six phthalates (five aliphatic phthalates and one phenyl phthalate) by cetyltrimethylammonium bromide (CTAB) and beta-cyclodextrin (beta-CD) were studied at 25 degreesC. The solubilities of these plithalates are remarkably enhanced by CTAB solutions above the critical micelle concentration (cmc). Only marginal enhancement of phthalate solubility was observed in solutions containing CTAB below its cmc and beta-CD at low concentrations (less than 5 mM). The solubility enhancements of the plithalates are proportional to the added amount of CTAB and beta-CD. Partition coefficients of the plithalates between monomeric CTAB surfactant and water (K-MN) and between CTAB micelle and water K-MC) were estimated from the experimental data. The mechanisms of solubility enhancements by CTAB and beta-CD were discussed. A log-linear equation was proposed and evaluated for the solubilization by CTAB below cmc, while the previously proposed linear partitioning model was questioned. The structures of the complexes formed between plithalates and beta-CD were proposed, and the formation constants were estimated. The values of log K-MC, log K-MN, and log Kbeta-CD of the plithalates were found to correlate linearly with the log K-OW of plithalates, with the exception of the solid phenyl phthalate.
Resumo:
Eight kinds of plants were tested in channel-dyke and field irrigation systems. The removal rates of TP, phosphate, TN, ammonia, CODcr and BOD, in the channel-dyke system with napiergrass (Pennisetum purpurem Schumach, x Pennisetum alopecuroides (L.) Spreng American) were 83.2, 82.3, 76.3, 96.2, 73.5 and 85.8%, respectively. The field irrigation systems with rice I-yuanyou No.1(88-132) (Oryza sativa L.) and rice II- suakoko8 (Oryza glaberrima) had high efficiency for N removal; the removal rate were 84.7 and 84.3%, respectively. The mass balance data revealed that napiergrass, rice I and II were the most important nutrient sinks, assimilating more than 50% of TP and TN. Plant uptake of N and P as percentage of total removal from wastewater correlated with biomass yield of and planting mode. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We grow InN epilayers on different interlayers by metal organic vapour phase epitaxy (MOVPE) method, and investigate the effect of interlayer on the properties and growth mode of InN films. Three InN samples were deposited on nitrided sapphire, low-temperature InN (LT-InN) and high-temperature GaN (HT-GaN), respectively. The InN layer grown directly on nitrided sapphire owns the narrowest x-ray diffraction rocking curve (XRC) width of 300 arcsec among the three samples, and demonstrates a two-dimensional (2D) step-flow-like lateral growth mode, which is much different from the three-dimensional (3D) pillar-like growth mode of LT-InN and HT-GaN buffered samples. It seems that mismatch tensile strain is helpful for the lateral epitaxy of InN film, whereas compressive strain promotes the vertical growth of InN films.