69 resultados para Exhaled Aerosol
Resumo:
A new algorithm has been developed for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations in case I waters. This algorithm is based on an improved complete model for the inherent optical properties and accurate simulations of the radiative transfer process in the coupled atmosphere-ocean system. It has been tested against synthetic radiances generated for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) channels and has been shown to be robust and accurate. A unique feature of this algorithm is that it uses the measured radiances in both near-IR and visible channels to find that combination of chlorophyll concentration and aerosol optical properties that minimizes the error across the spectrum. Thus the error in the retrieved quantities can be quantified.
Resumo:
Gaseous and particulate semi volatile carbonyls have been measured in urban air using an annular denuder sampling system. Three dicarbonyls, five aliphatic aldehydes and two hydroxy carbonyls were observed. Concentrations of other biogenic and anthropogenic volatile organic compounds (VOCs), SO2, CO, NO2 and particle concentration were also measured. Estimated gas-aerosol equilibrium constants for the carbonyls showed an inverse correlation with the concentrations of anthropogenic pollutants such as benzene, isopentane and SO2. This suggests that the increase in the fraction of non-polar anthropogenic particles in the atmosphere could change the average property of the ambient aerosols and drive the gas particle equilibrium of the carbonyls to the gas phase. This trend is uncommon in remote forest air. In this study, we examined the factors controlling the equilibrium in the polluted atmosphere and show that there is a difference in gas-aerosol partition between polluted and clean air.
Synthesis and characterization of functionalized mesoporous silica by aerosol-assisted self-assembly
Resumo:
An efficient, productive, and low-cost aerosol-assisted self-assembly process has been developed to produce organically modified mesoporous silica particles via a direct co-condensation of silicate species and organosilicates that contain nonhydrolyzable functional groups in the presence of templating surfactant molecules. Different surfactants including cetyltrimethylammonium bromide, nonionic surfactant Brij-56, and triblock copolymer P123 have been used as the structure-directing agents. The organosilanes used in this study include tridecafluoro-1, 1,2,2-tetrahydrooctyltriethoxysilane, methytriethoxysilane, vinyltrimethoxysilane, and 3-(trimethoxysilyl)propyl methacrylate. X-ray diffraction and transmission electron microscopy studies indicate the formation of particles with various mesostructures. Fourier transform infrared and solid-state nuclear magnetic resonance spectra confirm the organic ligands are covalently bound to the surface of the silica framework. The porosity, pore size, and surface area of the particles were characterized using nitrogen adsorption and desorption measurements.
Resumo:
Heat transfer from plasma to a nonspherical partical in the free-molecular regime is studied in the present paper under thin plasma sheath condition. Analytical expressions for the floating potential charge and heat fluxes of an ellipsoid particle of revolution are derived and curves are given for key parameters for arbitrary plasma flow direction. On the basis of these results, an equivalent sphere with the same surface area as the nonspherical particle is suggested to be used for calculating the total heat flux of nonspherical particle in engineering application with acceptable accuracy. Furthermore, the effects of particle rotation, which occurs in most aerosol systems, on the heat transfer are also discussed.
Resumo:
In this paper, a new computational scheme for solving flows in porous media was proposed. The scheme was based on an improved CE/SE method (the space-time Conservation Element and Solution Element method). We described porous flows by adopting DFB (Brinkman-Forchheimer extended Darcy) equation. The comparison between our computational results and Ghia's confirmed the high accuracy, resolution, and efficiency of our CE/SE scheme. The proposed first-order CE/SE scheme is a new reliable way for numerical simulations of flows in porous media. After investigation of effects of Darcy number on porous flow, it shows that Darcy number has dominant influence on porous flow for the Reynolds number and porosity considered.
Resumo:
研制成功便携式激光尘埃粒子计数器的核心部件——微型光学传感器。该传感器采用直角散射光收集形式。以高功率半导体激光器作为光源,同时采用高性能的PIN型光电二极管作为光电探测器。散射光收集系统为单一大数值孔径的球面反射镜,其对粒子散射光的收集角范围从20°到160°。粒子散射光信号是脉冲信号,其频谱成份主要在高频段,所以在PIN型光电二极管后用一个带通式前置放大器来消除外界的低频噪声.根据米氏散射理论计算了该光学传感器的光散射响应特性,并用聚苯乙烯标准粒子实测了该光学传感器的性能。结果表明,该系统具有高的信噪
Resumo:
A new method using an atomic-resonance filter and deconvolution techniques has been developed to acquire high-resolution spectra of atmospheric Rayleigh-Mie scattering. In the deconvolution process, the difficulty of the undetermined division 0/0 is overcome by a fitting method. Preliminary laboratory experimental results on 90-deg scattering show that with a signal-to-noise ratio of 20, the scattered Rayleigh-Mie spectrum may be retrieved in agreement with the theoretical analysis.