33 resultados para Eusebius, Bishop of Emesa, ca. 300-ca. 359.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The net charges at atoms in the high-temperature superconductor TlBa2Can-1CunO2n+3 (n = 1 to 3) are calculated by means of the tight-binding approximation based on the EHMO method. The results indicate that the charge distribution in this kind of compounds possesses a specially layered arrangement. An insulating Ba-Ba layer is inserted between the Cu-O layer and the Tl-O layer. There may exist a weak coupling between the Cu-O layer and the Tl-O layer through the interaction of the same O(2) atom with both the Cu atom and the Tl atom. The existence of the Ca in the compounds can cause the valence fluctuation at the Cu atom. The calculated electric field gradients at atoms implies that the conducting electron or hole may move in the Cu-O layer, which is closest to the Tl-O layer, along the a-b plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many garnet peridotite bodies are enclosed in ultrahigh-pressure (UHP) gneisses and/or migmatites in worldwide UHP terranes formed by subduction of continental crust. On the basis of petrochemical data, a group of garnet peridotites have been derived from depleted mantle and were subsequently metasomatized by melts and/or fluids derived from the subducted continental crust. However, their depletion and enrichment processes and tectonic evolutions are still in conflicts. New evidences for metamorphism of garnet lherzolite from Zhimafang, Donghai County, Sulu UHP terrane are reported. The garnet lherzolite have experienced a prolonged multistage metamorphic history. At least seven stages of recrystallization have been identified based on detailed analysis of reaction textures and mineral compositions. Stage I was a high-pressure and high-temperature enriched garnet lherzolite stage, which is inferred from the presence of high Ca-Cr core of garnet porphyroclast and inclusions of high-Mg clinopyroxene, high-Al-Cr orthopyroxene and high-Mg olivine. Stage II is a high-temperature and low-pressure depleted spinel-hurzbergite or spinel-dunite stage, as indicated by the presence of relict Al-rich spinel, very high-Mg and low-Ni olivine and high-Mg orthopyroxene included in the low-Cr mantle of the porphyroclastic garnet and core of fine-grained neoblastic garnet, clinopyroxene is absent in this stage. Stage III is an hydrous amphibole spinel-lherzolite stage, which recorded events of cooling and metasomatic re-enrichment, this stage is manifested by metasomatic origin of amphibole and phlogopite-bearing porphyroblastic clinopyroxene, and porphyroblastic orthopyroxene. Stage IV is a high-pressure amphibole garnet-lherzolite stage, which is indicated by the formation of low-Cr mantle of the porphyroclastic garnet and amphibole-bearing low-Cr core of neoblastic garnet. Stage V is an UHP metamorphic garnet-lherzolite stage, which is characterized by the formation of high-Cr rim of both porphyroclastic and neoblastic garnet and recrystallization of olivine, clinopyroxene and orthopyroxene in the matrix. During UHP metamorphism, the garnet lherzolite is dehydrated, hornblende decomposed to clinopyroxene and olivine. Stage VI is a high-pressure decompression amphibole garnet-lherzolite stage, indicated by formation of later coarse-grained pargasitic hornblende and phlogopite in the garnet stability field. Stage VII is a low-pressure decompression amphibole-chlorite spinel-lherzolite stage, indicated by replacement of garnet by kelyphite of high-Al orthopyroxene + aluminous spinel + tremolitic amphibole + chlorite + talc. The metamorphic evolutions of Zhimafang garnet lherzolite suggest that it displays progressive mantle wedge convection during the subduction of previous oceanic and subsequent continental slab. We propose that the Zhimafang garnet lherzolite were originated from enriched deep mantle wedge above the previously subducted oceanic slab, subduction of oceanic slab resulted in their convection to shallower back arc and sub-arc setting, decompressional melting transformed the enriched garnet-lherzolite to depleted spinel-hurzbergite or spinel-dunite, the spinel-hurzbergite or spinel dunite was then convected to the hydrous mantle wedge corner driven by corner flow and was cooled and metasomatized by slab-derived melts/fluids, and was transformed to enriched lherzolite. The lherzolites formed a downward mantle wedge layer above successively subducted continental crust. The peridotite subducted together with the underlying continental crust and suffered UHP metamorphism. Finally, the garnet-lherzolite exhumed to the earth surface together with the UHP terrane. Detailed analyses of reaction textures and mineral compositions revealed several stages of metasomatism related to continental subduction and exhumation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuous long (224m) and high-resolution core TY2 was recovered from paleo-maar-lake Tianyang, tropical South China. Based on the diatom records of the upper 130-m core, this paper focuses on exploring climate change and the lake evolution history in tropical South China during the past 240ka. The most typical and unique characteristics of the diatom assemblages is that, Aulacoseira granulata was dominant or absolutely dominant species (80-90%) during most parts of the 130-m core, while Cyclotella stelligera var. tenuis and Fragilaria construens var. venter were subdominant species in only limited parts of the lower and upper core, respectively. Time scale is always the biggest problem for the study of TY2 core, so although diatom is seldom used for establishing time scale, here we attempt this by correlating the diatom-reconstructed temperature sequence with the time scale of ODP core 806B from Equatorial Western Pacific. Verified by the few most reliable ages from TY2 core and the parallel core TYl, a rather reasonable and reliable time scale was established. 01S 7/6 falls at the depth of 100m (ca. 194kaBP), OIS 6/5 at 75m (ca. 132kaBP), OIS 5/4 at 46m (ca. 75kaBP), OIS 4-3 at 35m (ca. 60kaBP). Qualitative and quantitative environmental reconstructions are made on the basis of diatom assemblage ecotype and EDDI dataset. Correlation of diatom-reconstructed temperature and moisture changes of Core TY2 with pollen-reconstructed temperature and rainfall sequence of Core TYl proves that the results are quite consistent in most periods. Thus the reconstruction results from diatom are quite reliable, and probably have a much higher resolution than pollen results. Combined with lithological and magnetic susceptibility variations, the diatom analysis reveals that, the general climate in tropical South China during the past 240ka was warm and wet. On the time scale of glacial-interglacial, warm and wet, cool and dry are not always synchronous. It was relatively warm-wet during the penultimate interglacial, cool-dry during the penultimate glacial, warm-dry during the last interglacial, and cooler-drier during the last glacial. In contrast, on the time scale of subglacial-subinterglacial scales, warm and dry, cool and wet corresponds very obviously, showing very clear 21-23 ka precession cycle. Analysis also shows that, the water of Tianyang paleo-maar-lake was generally warm, turbulent, turbid, meso-trophic, slightly alkaline, low conductivity and fresh during the past 240 kaBP, with small variations in some parts. Tianyang paleolake experienced shallow to semi-deep lake in OIS7d, open shallow lake in OIS7c-OIS5b, shallow coastal lake in OIS5a-OIS4c, swamp in OIS4b, and then completely dried up in OIS3c. The lake evolution was mainly controlled by temperature and precipitation changes in tropical China. While temperature and precipitation changes were probably controlled by the migrations of monsoon rainband and the evaporation rate, which was in turn controlled by the evolution of East Asian monsoon. Therefore, when the summer monsoon was strongest the climate was warm-dry, when stronger the climate was warm-wet; when the winter monsoon was strongest the climate was cool-dry, stronger cool-wet. This mechanism caused the warm-dry sub interglacial and cool-wet subglacial climate in the tropical South China.