159 resultados para Energy level splitting


Relevância:

80.00% 80.00%

Publicador:

Resumo:

以两种吡唑啉衍生物为空穴传输材料(HTM)和BBOT为电子传输材料组成双层器件,获得了相对于组成材料的荧光光谱红移和宽化的电致发光.双层器件和HTM:BBOT等摩尔混蒸薄膜的光致发光及电致发光测量表明,该谱带来自HTM/BBOT界面激基复合物的发射,根据器件的能级图,激基复合物的类型为BBOT的激发态BBOT^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first-principles band structure methods, we investigate the interactions between different donors in In2O3. Through the formation energy and transition energy level calculations, we find that an oxygen-vacancy creates a deep donor level, while an indium-interstitial or a tin-dopant induces a shallow donor level. The coupling between these donor levels gives rise to even shallower donor levels and leads to a significant reduction in their formation energies. Based on the analysis of the PBE0-corrected band structure and the molecular-orbital bonding diagram, we demonstrate these effects of donor-donor binding. In addition, total energy calculations show that these defect pairs tend to be more stable with respect to the isolated defects due to their negative binding energies. Thus, we may design shallow donor levels to enhance the electrical conductivity via the donor donor binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of the effective mass theory, this paper calculates the electron energy levels of an InAs/GaAs tyre-shape quantum ring (TSQR) by using the plane wave basis. The results show that the electron energy levels are sensitively dependent on the TSQR's section thickness d, and insensitively dependent on TSQR's section inner radius R-1 and TSQR's inner radius R-2. The model and results provide useful information for the design and fabrication of InAs/GaAs TSQRs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4 V/mu m (about 2.5 V/mu m for the undoped ZnO films) is obtained at an emission current density of 1 mu A/cm(2) and the stable current density reaches 1 mA/cm(2) at an applied field of about 2.1 V/mu m. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first-principles methods, we studied the extrinsic defects doping in transparent conducting oxides CuMO2 (M=Sc, Y). We chose Be, Mg, Ca, Si, Ge, Sn as extrinsic defects to substitute for M and Cu atoms. By systematically calculating the impurity formation energy and transition energy level, we find that Be-Cu is the most prominent extrinsic donor and Ca-M is the prominent extrinsic acceptor. In addition, we find that Mg atom substituting for Sc is the most prominent extrinsic acceptor in CuSCO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials through extrinsic doping in CuMO2 (M=SC, y). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doping difficulty in semiconductor nanocrystals has been observed and its origin is currently under debate. It is not clear whether this phenomenon is energetic or depends on the growth kinetics. Using first-principles method, we show that the transition energies and defect formation energies of the donor and acceptor defects always increase as the quantum dot sizes decrease. However, for isovalent impurities, the changes of the defect formation energies are rather small. The origin of the calculated trends is explained using simple band-energy-level models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show that (1) the energy levels monotonically decrease as the quantum confinement sizes increase; (2) the impurity energy levels decrease more slowly for QWWs and QDs as their sizes increase than for QWs; (3) the changes of the acceptor binding energies are very complex as the quantum confinement size increases; (4) the binding energies monotonically decrease as the acceptor moves away from the nano-structures' center; (5) as the symmetry decreases, the degeneracy is lifted, and the first binding energy level in the QD splits into two branches. Our calculated results are useful for the application of semiconductor nano-structures in electronic and photoelectric devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our Raman measurement indicates that the intensity of the peaks (510 and 645 cm(-1)) related to nitrogen concentration is enhanced in MgZnO compared with that in ZnO. Using first-principles band structure methods, we calculated the formation energy and transition energy level for nitrogen acceptor in ZnO and random MgxZn1-xO (with x=0.25) alloy. Our calculations show that the incorporation of nitrogen can be enhanced as Mg is alloyed into ZnO, which agrees with our experiments. The acceptor energy level deeper in the alloy ascribes to the downward shift of the valence-band maximum edge in the presence of magnesium. (c) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the first-principles band-structure method, we investigate the p-type doping properties and band structural parameters of the random Ga1-xInxN1-yAsy quaternary alloys. We show that the Mg-Ga substitution is a better choice than ZnGa to realize the p-type doping because of the lower transition energy level and lower formation energy. The natural valence band alignment of GaAs and GaInNAs alloys is also calculated, and we find that the valence band maximum becomes higher with the increasing in composition. Therefore, we can tailor the band offset as desired which is helpful to confine the electrons effectively in optoelectronic devices. (C) 2008 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have grown resonant tunnelling diodes (RTDs) with different sized emitter prewells and without a prewell. The current-voltage (I-V) characteristics of them in different magnetic fields were investigated. Two important phenomena were observed. First, a high magnetic field can destroy the plateau-like structure in the I-V curves of the RTD. This phenomenon is ascribed to the fact that the high magnetic field will demolish the coupling between the energy level in the main quantum well and that in the emitter quantum well or in the prewell. Secondly, the existence and size of the prewell are also important factors influencing the plateau-like structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A modified self-consistent method is introduced for the design of AlxGa1-xN/GaN step quantum well (SQW) with the position and energy-dependent effective mass. The effects of nonparabolicity are included. It is shown that the nonparabolicity effect is minute for the lowest subband energy level and grows in size for the higher subband states. The effects of nonparabolicity have significant influence on the transition energies and the oscillator strengths and should be taken into account in the investigation of the optical transitions. The strong asymmetric property introduced by the step quantum well magnifies the weak intersubband transition from the ground state to the third state (1 -> 3). It is shown that in an appropriate scope, the intersubband transition (1 -> 3) has the comparable oscillator strength with transition from the ground state to the second one (1 -> 2), which suggests the possible application of the two-color photodetectors. The results of this work should provide useful guidance for the design of optically pumped asymmetric quantum well lasers and quantum well infrared photodetectors (QWIPs). (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structures of N quantum dot molecules (QDMs) are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels are calculated. In the calculations, the effects of finite offset and valence-band mixing are taken into account. The theoretical method can be used to calculate the electronic structures of any QDM. The results show that (1) electronic energy levels decrease monotonically and the energy difference between the N QDMs decreases as the quantum dot (QD) radius increases; (2) the electron energy level is lower and quantum confinement is smaller for the larger N QDM; (3) the hole ground state energy level is lower for the one dot QDM than N (greater 1) QDMs if the QD radius is larger than about 5 nm due to the valence-band mixing. The results are useful for the application of the N QDM to photoelectric devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first-principles methods, we have systematically calculated the defect formation energies and transition energy levels of group-III and group-V impurities doped in H passivated Si quantum dots (QDs) as functions of the QD size. The general chemical trends found in the QDs are similar to that found in bulk Si. We show that defect formation energy and transition energy level increase when the size of the QD decreases; thus, doping in small Si QDs becomes more difficult. B-Si has the lowest acceptor transition energy level, and it is more stable near the surface than at the center of the H passivated Si QD. On the other hand, P-Si has the smallest donor ionization energy, and it prefers to stay at the interior of the H passivated Si QD. We explained the general chemical trends and the dependence on the QD size in terms of the atomic chemical potentials and quantum confinement effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on a Si delta-doped In0.65Ga0.35As/In0.52Al0.48As metamorphic high-electron-mobility transistor with InP substrate in a temperature range between 1.5 and 60 K under magnetic field up to 13 T. We studied the Shubnikov-de Haas (SdH) effect and the Hall effect for the In0.65Ga0.35As/In0.52Al0.48As single quantum well occupied by two subbands and obtained the electron concentration and energy levels respectively. We solve the Schrodinger-Kohn-Sham equation in conjunction with the Poisson equation self-consistently and obtain the configuration of conduction band, the distribution of carriers concentration, the energy level of every subband and the Fermi energy. The calculational results are well consistent with the results of experiments. Both experimental and calculational results indicate that almost all of the delta-doped electrons transfer into the quantum well in the temperature range between 1.5 and 60 K.