417 resultados para Emission tuning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the laser actions of 5at.% Yb:Gd2xY2(1-x)SiO5 (Yb:GYSO; x = 0.1) crystals with different cutting directions, parallel and vertical to the growth axis. Our results show that the cutting direction of the sample plays an astonished role in the laser operation. The sample cut vertically to the growth axis possesses the favourable lasing characteristics. Its output power reaches 3.13W at 1060nm with a slope efficiency of 44.68% when the absorbed pump power is 8.9 W. In contrast, the sample cut parallel reaches only 1.65 W at 1044 nm with a slope elLiciency of 33.76% with absorbed pump power of 7.99 W. The absorption and emission spectra of the two samples are examined and the merit factor M is calculated. Our analysis is in agreement well with the experimental results. The wavelength tuning range of the superior sample covers from 1013.68 nm to 1084.82 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conical emission (CE) has been investigated experimentally by laser pulses with different pulse durations and spectral bandwidths. The results show that the overall CE curve will shift as the varying of spectral bandwidth of pump laser pulse. But for pump laser pulses which have same spectral bandwidth but different pulse duration, the CE angles will be same at the spectral region close to the pump wavelength while will be different at the spectral region far away from the pump wavelength. We have also fitted the measured CE angles with X-wave model. The calculated curves and the measured CE curves match reasonably well. The best fits indicate that the group velocity of the filament pulse may be greatly controlled by controlling the spectral bandwidth of pump laser pulse. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different conical emission (CE) patterns are obtained experimentally at various incident powers and beam sizes of pump laser pulses with pulse durations of 7 fs, 44 fs and 100 fs. The results show that it is the incident power but not the incident power density that determines a certain CE pattern. In addition, the critical powers for similar CE patterns are nearly the same for the laser pulses with the same spectral bandwidth. Furthermore, as far as a certain CE pattern is concerned, the wider the spectral bandwidth of pump laser pulse is, the higher the critical power is. This will hopefully provide new insights for the generation of CE pattern in optical medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate experimentally the high-order harmonic generation from aligned CO2 molecules and demonstrate that the modulation inversion of the harmonic yield with respect to molecular alignment can be altered dramatically by fine-tuning the intensity of the driving laser pulse for harmonic generation. The results can be modeled by employing the strong field approximation including a ground state depletion factor. The laser intensity is thus proved to be a parameter that can control the high-harmonic emission from aligned molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red-shift conical emission (CE) is observed by femtosecond laser pulse propagating in BK7 at a low input power (compared to those input powers for generation of blue-shift CE). With the increasing input power the blue-shift CE begins to appear whereas the red-shift CE ring (902 nm in our experiment) disappears accompanied by the augment of the central white spot size synchronously. The disappearing of red-shift CE in our experiment is explained such that the increase of axial intensity is much higher than that of ring emission and the augment of the central white spot size with the increasing input laser power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The imaging technology of stimulated emission depletion (STED) utilizes the nonlinearity relationship between the fluorescence saturation and the excited state stimulated depletion. It implements three-dimensional (3D) imaging and breaks the diffraction barrier of far-field light microscopy by restricting fluorescent molecules at a sub-diffraction spot. In order to improve the resolution which attained by this technology, the computer simulation on temporal behavior of population probabilities of the sample was made in this paper, and the optimized parameters such as intensity, duration and delay time of the STED pulse were given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-energy ion emission from intense-ultrashort (30fs) laser-pulse- cooled deuterium-cluster (80K) interaction is measured. The deuterium ions have an average energy 20keV, which greatly exceeds Zweiback's expectation [Phys. Rev. Lett. 84 (2000) 2634]. These fast deuterium ions can be used to drive fusion and have a broad prospect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conical emission is investigated for Ti:sapphire femtosecond laser pulses propagating in water. The colored rings can be observed in the forward direction due to the constructive and destructive interference of transverse wavevector, which are induced by the spatio-temporal gradient of the free-electron density. With increasing input laser energy, due to filamentation and pulse splitting induced by the plasma created by multiphoton excitation of electrons from the valence band to the conduction band, the on-axis spectrum of the conical emission is widely broadened and strongly modulated with respect to input laser spectrum, and finally remains fairly constant at higher laser energy due to intensity clamping in the filaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear X-wave formation at different pulse powers in water is simulated using the standard model of nonlinear Schrodinger equation (NLSE). It is shown that in near field X-shape originally emerges from the interplay between radial diffraction and optical Kerr effect. At relatively low power group-velocity dispersion (GVD) arrests the collapse and leads to pulse splitting on axis. With high enough power, multi-photon ionization (NIPI) and multi-photon absorption (MPA) play great importance in arresting the collapse. The tailing part of pulse is first defocused by MPI and then refocuses. Pulse splitting on axis is a manifestation of this process. Double X-wave forms when the split sub-pulses are self-focusing. In the far field, the character of the central X structure of conical emission (CE) is directly related to the single or double X-shape in the near field. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated that a synthesized laser field consisting of an intense long (45 fs, multi-optical-cycle) laser pulse and a weak short (7 fs, few-optical-cycle) laser pulse can control the electron dynamics and high-order harmonic generation in argon, and generate extreme ultraviolet supercontinuum towards the production of a single strong attosecond pulse. The long pulse offers a large amplitude field, and the short pulse creates a temporally narrow enhancement of the laser field and a gate for the highest energy harmonic emission. This scheme paves the way to generate intense isolated attosecond pulses with strong multi-optical-cycle laser pulses.